This conclusion makes contribution to the development of "zero-waste" conception.Increasing use of organophosphorus flame retardants (OPFRs) has aroused great concern to their uncertain environment risk, especially to human health risk. In our study, hepatotoxicity screening of six aryl-OPFRs, potential hepatotoxicity mechanism of 2-ethylhexyldiphenyl phosphate (EHDPP) using RNA-sequencing and its metabolites were investigated in human hepatocytes (L02). The toxicity results demonstrated that EHDPP should be prioritized for further research with the highest toxicity. Further RNA-seq results through GO and KEGG enrichment analysis indicated that exposure to 10 mg/L of EHDPP significantly affected energy homeostasis, endoplasmic reticulum (ER) stress, apoptosis, cell cycle, and inflammation response in cells. The top 12 hub genes were validated by RT-qPCR and conformed to be mainly related to glycolysis and ER stress, followed by cell cycle and inflammation response. Western blot, apoptosis detection, glycolysis stress test, and cell cycle analysis were further performed to verify the above main pathways. Additionally, it was found in the metabolism experiment that detoxification of EHDPP by phase I and phase II metabolism in cells wasn't significant until 48 h with a metabolic rate of 6.12%. EHDPP was stable and still dominated the induction of toxicity. Overall, this study provided valuable information regarding the toxicity and potential metabolism pathway of EHDPP.Photocatalytic materials for photocatalysis is recently proposed as a promising strategy to address environmental remediation. Metal-free graphitic carbon nitride (g-C3N4), is an emerging photocatalyst in sulfate radical based advanced oxidation processes. The solar-driven electronic excitations in g-C3N4 are capable of peroxo (O‒O) bond dissociation in peroxymonosulfate/peroxydisulfate (PMS/PDS) and oxidants to generate reactive free radicals, namely SO4•- and OH• in addition to O2•- radical. The synergistic mechanism of g-C3N4 mediated PMS/PDS photocatalytic activation, could ensure the generation of OH• radicals to overcome the low reductive potential of g-C3N4 and fastens the degradation reaction rate. This article reviews recent work on heterojunction formation (type-II heterojunction and direct Z-scheme) to achieve the bandgap for extended visible light absorption and improved charge carrier separation for efficient photocatalytic efficiency. Focus is placed on the fundamental mechanistic routes followed for PMS/PDS photocatalytic activation over g-C3N4-based photocatalysts. A particular emphasis is given to the factors influencing the PMS/PDS photocatalytic activation mechanism and the contribution of SO4•- and OH• radicals that are not thoroughly investigated and require further studies. Concluding perspectives on the challenges and opportunities to design highly efficient persulfate-activated g-C3N4 based photocatalysts toward environmental remediation are also intensively highlighted.Tobacco is a super-enriched plant for heavy metals, and its productivity is sensitively affected by Cd. In this study, tobacco stalk was converted to biochar (TS-biochar) for the sequestration of Cd in soils to enhance the productivity of tobacco. https://www.selleckchem.com/products/Eloxatin.html FTIR, SEM-EDX, and XPS characterizations of TS-biochar together with Cd2+ adsorption kinetics revealed that oxy-containing functional groups (‒OH, C˭O, and ‒COOH) in TS-biochar played a crucial role on Cd2+ adsorption. The changes of soil property and Cd speciation by adding TS-biochar in red (acidic) and cinnamon (alkaline) soils was evaluated. Effects of TS-biochar on tobacco growth and development under Cd stress was also investigated. Results indicated that a 2 wt% addition of TS-biochar in red soil could significantly increase the soil pH value (from 5.21 to 7.39) and reduce exchangeable Cd fractions (from 40% to 23%), but those were not obvious in cinnamon soil. Under the stress of Cd, TS-biochar could obviously improve the tobacco dry biomass, and decrease the accumulation of Cd in the middle and upper leaves, thus reducing economic loss. Overall, the application of TS-biochar on Cd contaminated soil can transform bioavailable Cd into low hazardous forms, so as to repair soils and improve the productivity of tobacco.Sulfur dioxide (SO2), cysteine (Cys) and glutathione (GSH), which perform crucial actions in regulating the balance of human, are closely related reactive sulfur species (RSS). Moreover, SO2 is one of the most concerned air pollutants, which is easily soluble in water and forms its derivatives. Therefore, it is highly desirable to differentiate SO2 derivatives and Cys/GSH in living cells and environment. Herein, a new near-infrared (NIR) mitochondria-targeted fluorescent probe, NIR-CG, which could distinguish SO2 derivatives and Cys/GSH by using multiple sets of signal patterns under single excitation was reported. NIR-CG exhibited different fluorescence signal modes to SO32- and Cys/GSH with low limit of detection (17.1 nM for SO32-, 17.3 nM for Cys and 25.9 nM for GSH). The recognition mechanisms of NIR-CG to SO32- and Cys/GSH were verified by HRMS, 1H NMR and DFT calculation. NIR-CG had good ability of mitochondrial targeted and fluorescence imaging in cells. What's more, NIR-CG showed great recovery rates (101-104%) in the determination of SO32- in actual water samples. It was worth noting that NIR-CG-based paper strip successfully realized the visual quantitative detection of SO32- and Cys/GSH by use of smartphone, which offered a novel method to develop powerful sensing platform.This study experimentally investigated the effect of low-frequency ultrasonic waves on the heat transfer augmentation of turbulent water flow in a narrow rectangular duct with a width of 5 mm. 25-, 33-, and 40-kHz ultrasonic transducers were set to release waves in a downward direction to disturb the flow, with Reynolds numbers (Re) of 10,000-25,000 at increments of 2500. The results indicated that the ultrasonic waves increased the friction loss by only 0.2-2% over the entire testing Re range, while an 8.1-48.6% enhancement of the heat transfer capability was obtained for the Re range of 10,000-15,000. The maximum Nusselt number occurred at a Re of 12,500 and frequency of 33 kHz. However, beyond Re values of 12,500, the thermal performance tended to decrease with an increase in Re. Consequently, the average Nusselt number ratios at ultrasonic frequencies of 25, 33, and 40 kHz over the tested Re range were 1.123, 1.039, and 1.033, respectively, while the thermal performance values were 1.108, 0.989, and 1.036, respectively.