https://www.selleckchem.com/products/pexidartinib-plx3397.html 46 µg kg-1 if the observed fluxes remain. These results will provide a reference for the development of strategies to control and reduce heavy metal contamination and diffusion in agricultural soils around irrigation areas.Real-time and in-situ monitoring of chemical reactions has attracted great attention in many fields. In this work, we in-situ monitored the photodegradation reaction process of methylene blue (MB) by Surface enhanced Raman scattering (SERS) technique. An effective and versatile SERS platform assembled from MoS2 nanoflowers (NFs) and TiO2 nanoparticles (NPs) was prepared successfully. The optimized MoS2/TiO2 substrate (MTi20) exhibits not only an ultra-high SERS response but also the excellent catalytic degradation performance to the contaminant MB, which provided a new material for real-time and in-situ monitoring the photodegradation process. Experiments prove that the detection limit is as low as 10-13 M, and degradation rate is as high as 97.2% in 180 s, respectively. And the activity of the substrate kept in the air for 90 days is almost unchanged. Furthermore, as a practical SERS substrate, MTi20 can also detect trace amounts of other harmful substances including malachite green (MG), bisphenol A (BPA) and endosulfan. Thus, this study come up with a new orientation at the real-time and in-situ monitoring of photocatalytic reaction and may be applied in environmental monitoring and food security fields in the future.The environmental risk from long-term plastic pollution is growing. We investigated the multi and trans-generational reproductive toxicity of nanoplastics (NPs) in Caenorhabditis elegans and the underlying mechanisms over five generations. Following a single maternal exposure (F0) to NPs (100 nm; 1, 10, 50, or 100 mg/L) for 72 h, the subsequent generations (F1-F4) were cultured under NPs-free conditions. We showed that the total brood size was significantly reduced acro