https://www.selleckchem.com/products/Azacitidine(Vidaza).html One of the main challenges for implantable biomedical sensing schemes is obtaining a reliable signal while maintaining biocompatibility. In this work, we demonstrate that a combination of medical ultrasound imaging and smart hydrogel micromechanical resonators can be employed for continuous monitoring of analyte concentrations. The sensing principle is based on the shift of the mechanical resonance frequencies of smart hydrogel structures induced by their volume-phase transition in response to changing analyte levels. This shift can then be measured as a contrast change in the ultrasound images due to resonance absorption of ultrasound waves. This concept eliminates the need for implanting complex electronics or employing transcutaneous connections for sensing biomedical analytes in vivo. Here, we present proof-of-principle experiments that monitor in vitro changes in ionic strength and glucose concentrations to demonstrate the capabilities and potential of this versatile sensing platform technology.The halogenated acetic acids (HAAs) are generally considered as environmental contaminants and are suspected to pose a major public health concern. The inductively coupled plasma mass spectrometry (ICPMS) has been improved by coupling with the tandem mass spectrometry technology (ICPMS/MS), enabling ultratrace determination of heteroatoms. There have been few reports about the determination of chlorine-containing analytes by high-performance liquid chromatography (HPLC)-ICPMS/MS but none about utilizing this technique for the speciation analysis of organic halogenated compounds in environmental matrixes. We report a rapid method for the simultaneous determination of up to nine chlorinated and brominated acetic acids by HPLC-ICPMS/MS in Austrian surface, ground, and tap water. The chromatographic separation of the main five regulated haloacetic acids (so-called HAA5 chloroacetic acid, dichloroacetic acid, trich