https://www.selleckchem.com/products/2-2-2-tribromoethanol.html A phage-display library was generated using a Bus thalamus scorpion toxin (BTK-2) as a peptide scaffold. BTK-2 belongs to the disulfide-rich family of proteins with pronounced structural stability due to the presence of three disulfide bridges that connects antiparallel beta-sheets and one alpha helix. Using BTK-2 as a phage display scaffold, we introduced mutations in five residues located in the alpha-helix and two residues located in the smaller loop, keeping intact the disulfide bridges to create a peptide phage-displayed library with disulfide-rich family properties. The library was subjected to in vivo and in vitro phage display selections against Trypanosoma evansi, the etiological agent of "Surra", a disease that affects a wide range of mammals. The development of T. evansi specific biomarkers is essential to improve diagnostic methods and epidemiological studies leading to a more accurate clinical decision for the treatment of this disease of economic impact for commercial livestock production. In this study, we identified two disulfide-rich peptides targeting T. evansi parasites. Further specificity studies are necessary to investigate the potential of selected peptides as new biomarkers to aid diagnostic and treatment procedures of T. evansi infections. The research on impacts of environmental chemicals on crustacean molting dates back to the 1970s when ground-breaking studies investigated the disruption of molting in Crustacea by organochlorines. With the emergence of a new scientific inquiry, termed environmental endocrine disruption, in the early 1990s, increasing attention has been attracted to the possibility that environmental chemicals capable of wreaking havoc on sex steroid-regulated processes in vertebrates can also adversely affect ecdysteroid-mediated processes, e.g. molting, in crustaceans. Given the fact that many molting-disrupting chemicals accumulate in crustacean tissues and