https://www.selleckchem.com/products/NXY-059.html However, restoring sirtuin 1 by RESV administration significantly blocked the BPA-induced decrease in NBS1 and subsequently attenuated the BPA-induced impairment of DNA repair and apoptosis, as indicated by phosphorylated H2AX expression and staining and PARP expression. Moreover, RESV administration significantly ameliorated BPA-aggravated NOD-like receptor pyrin domain 3 and caspase 1 activation and interleukin-1β production, which were abolished by NBS1 knockdown. Furthermore, RESV administration prevented BPA-induced aggravation of atherosclerosis. Our findings indicate that impairment of sirtuin 1-mediated DNA repair is involved in BPA-induced aggravation of macrophage inflammation and atherosclerosis and that RESV might be a promising preventive and therapeutic agent for BPA-related CVDs.The increasing concentration of nitroimidazoles antibiotics (NIs) in the water environment has great threat to human and ecosystem security. Herein, the degradation rates of four NIs were found to vary with their molecular structures using Co3Mn-layered double hydroxide (LDH) catalyzed peroxymonosulfate oxidation process. Specifically, the degradation efficiency of secnidazole (SNZ) was determined to be the highest with a reaction rate of 0.24 min-1, which was 3.6, 2.3 and 1.8 times to that of menidazole (MZ), metronidazole (MTZ) and ornidazole (ONZ), respectively. During the reaction, 8.3% of Co2+ and 8.4% of Mn3+ transformed to Co3+ and Mn4+ after reaction, respectively. The conversion of bimetallic valence in Co3Mn-LDH donated electrons (e-) for PMS activation, resulting in the production of 1O2, OH, SO4- and O2-. Density functional theory (DFT) calculation showed that the presence of electron-donating groups (-CH3 and -OH) and the absence of electron-withdrawing atom (Cl) leaded to the richest active sites in the molecular structure of SNZ, which thus contributed to the highest degradation efficiency of SNZ. By deducing the