https://www.selleckchem.com/products/tiplaxtinin-pai-039.html The present study investigates the efficiency of a three-dimensional electro-peroxone (3D/E-peroxone) reactor filled with TiO2-GAC in removing diuron from aqueous solution and in the remediation of real pesticide wastewater. The behavior of the system in terms of the effect of independent variables on diuron was investigated and optimized by RSM-CCD and ANN-GA methods. Both approaches proved to have a very good performance in the modeling of the process and determined the optimum condition of the independent variables as follows initial pH = 10, applied current = 500 mA, supporting electrolyte = 0.07 M, ozone concentration = 10 mg L-1, and reaction time = 10 min. The 3D/E-peroxone process achieved a synergistic effect in diuron abatement and reduced significantly energy consumption, as compared to its individual components. H2O2 concentration generated in the electrolysis system was notably increased in the presence of TiO2-GAC microparticles. The BOD5/COD ratio of the real pesticide wastewater increased from 0.049 to 0.571 within 90 min treatment. Giving to the considerable enhancement of the biodegradability of the wastewater, this study strongly suggests that the 3D/E-peroxone process can be considered as a promising pretreatment step before a biological treatment process to produce intermediates which are more easily degradable by microorganisms.We report the photoelectrochemical application of a visible light active FTO-Cu2O/Ag3PO4 photoanode for the abatement of sulfamethoxazole in water. The as-synthesised photoanodes were characterised using XRD, field emission SEM, EDX, diffuse reflectance UV-vis, impedance spectroscopy and chronoamperometry. The results obtained confirmed a successful formation of p-n heterojunction at the Cu2O/Ag3PO4 interface. The highest photocurrent response of 0.62 mAcm-2 was obtained for the composite photoanode which was four times higher than pure Cu2O and about three ti