https://www.selleckchem.com/products/myf-01-37.html Based on density functional theory results, an experimental screening of 10 distinct DESs for chitin deacetylation followed. The most promising DESs were identified as K2CO3glycerol (K2CO3G), choline chlorideacetic acid ([Ch]ClAA), and choline chloridemalic acid ([Ch]ClMA) and were subjected to further optimization with respect to the water content, process duration, and temperature. Ultimately, [Ch]ClMA showed the best results, yielding a degree of deacetylation (DDA) of 40% after 24 h of reaction at 120 °C, which falls slightly behind the threshold value (50%) for chitin to be considered chitosan. Further quantum chemical calculations were performed to elucidate the mechanism. Upon the removal of 40% N-acetyl groups from the chitin structure, its reactivity was considerably improved.The COVID-19 pandemic is the largest global public health outbreak in the 21st century so far. Based on World Health Organization reports, the main source of SARS-CoV-2 infection is transmission of droplets released when an infected person coughs, sneezes, or exhales. Viral particles can remain in the air and on the surfaces for a long time. These droplets are too heavy to float in air and rapidly fall down onto the surfaces. To minimize the risk of the infection, entire surrounding environment should be disinfected or neutralized regularly. Development of the antiviral coating for the surface of objects that are frequently used by the public could be a practical route to prevent the spread of the viral particles and inactivation of the transmission of the viruses. In this short review, the design of the antiviral coating to combat the spread of different viruses has been discussed and the technological attempts for minimizing the coronavirus outbreak have been highlighted.Neurologists around the country and the world are rapidly transitioning from traditional in-person visits to remote neurologic care because of the coronavirus disea