https://www.selleckchem.com/Proteasome.html Effective process, including a cartridge packing polypropylene fiber sorbent modified by following on-line polydopamine coating, for on-line solid phase extraction in 2D UHPLC system has been developed. Hydrophobic surface of mechanically stable polypropylene fibers was hydrophilized using an automated and reproducible in situ coating process to enable good wettability and effective extraction of polar compounds. Polymerization mixture consisting dopamine and TRIS buffer was circulated through the cartridge containing polypropylene fibers using a peristaltic pump to achieve polymerization. This process was optimized in terms of dopamine amount in the polymerization mixture, its flow rate, and polymerization time. Best results were obtained with 25 mL polymerization mixture containing 20 mg dopamine circulated through the cartridge at a flow rate of 2.07 mL min-1 for 60 min. Prepared cartridges were evaluated via measurement of the recovery and reproducibility using chlorogenic acid as a model compound. Overall reproducibility of our multistep process including eight cartridges in 2D UHPLC system, each measured in triplicate, was 3.61% (n = 24).We developed a biochemical gas sensor (bio-sniffer) using the enzymatic reaction of alcohol dehydrogenase (ADH) to target ethanol in skin gas. By introducing a gas concentrator using liquid nitrogen, we constructed a highly sensitive system for skin gas measurements. The ethanol bio-sniffer was built from an optical-fiber probe employing an ADH enzyme membrane, an UV-LED light source for excitation, and a photomultiplier tube. Ethanol was measured by detecting the autofluorescence of the coenzyme NADH due to the enzymatic reaction of ADH. We established a system for measuring concentrated gases by connecting the sensor with a gas concentrator and introducing concentrated skin gas to the sensing surface. This suppressed diffusion of the concentrated gases to achieve maximum fluorescen