https://www.selleckchem.com/products/ve-822.html cells by 59%. When CO2 aeration rate, CO2 volume concentration, and circulating pump power were 0.210 L/min, 15%, and 30 W, chlorophyll a content, helix pitch, and CO2 fixation rate of Arthrospira sp. cells all reached peak values of 8.769 mg/L, 78.26 μm and 0.358 g/L/d, respectively. Green infrastructure (GI), which mimics natural hydrological systems, is a promising solution for flood management at the intersection of urban built infrastructure and natural systems. However, it has not yet achieved widespread uptake, due in part to insufficient understanding of human dimensions of the broader socio-ecological-technical system. We therefore conducted a multidisciplinary systematic literature review to synthesize research on people's existing knowledge about flood risk and GI, and how that shapes their attitudes and motivation to adopt new solutions. We systematically screened 21,207 studies on GI for flood management; 85 met our inclusion criteria. We qualitatively analyzed these studies to extract results on knowledge, attitudes, intentions, and behavior relating to GI for flood management. Overall, knowledge of GI was low across the 44 studies in which it was evaluated. Seventy studies assessed attitudes about GI, including the functional, aesthetic, health and safety, recreational, conservation, financial, and cultural value of GI, albeit their measurement was inconsistent. Willingness to implement or pay for GI varied considerably across 55 studies in which it was measured. Twenty studies measured and documented behavior relating to GI use, and these found low rates of adoption. Few studies systematically assessed the role of demographic, socio-economic, or geographic characteristics that could influence individuals' knowledge, attitudes, intentions or behavior, and thereby the success of GI programs. We recommend that researchers should more systematically capture data on human dimensions of GI (i.e. knowledge, a