https://www.selleckchem.com/mTOR.html Cytoplasmic double-stranded RNA is sensed by RIG-I-like receptors (RLRs), leading to induction of type I interferons (IFN-Is), proinflammatory cytokines, and apoptosis. Here, we elucidate signaling mechanisms that lead to cytokine secretion and cell death induction upon stimulation with the bona fide RIG-I ligand 5'-triphosphate RNA (3p-RNA) in tumor cells. We show that both outcomes are mediated by dsRNA-receptor families with RLR being essential for cytokine production and IFN-I-mediated priming of effector pathways but not for apoptosis. Affinity purification followed by mass spectrometry and subsequent functional analysis revealed that 3p-RNA bound and activated oligoadenylate synthetase 1 and RNase L. RNase L-deficient cells were profoundly impaired in their ability to undergo apoptosis. Mechanistically, the concerted action of translational arrest triggered by RNase L and up-regulation of NOXA was needed to deplete the antiapoptotic MCL-1 to cause intrinsic apoptosis. Thus, 3p-RNA-induced apoptosis is a two-step process consisting of RIG-I-dependent priming and an RNase L-dependent effector phase. To compare results reporting and the presence of spin in COVID-19 study preprints with their finalised journal publications. Cross-sectional study. International medical literature. Preprints and final journal publications of 67 interventional and observational studies of COVID-19 treatment or prevention from the Cochrane COVID-19 Study Register published between 1 March 2020 and 30 October 2020. Study characteristics and discrepancies in (1) results reporting (number of outcomes, outcome descriptor, measure, metric, assessment time point, data reported, reported statistical significance of result, type of statistical analysis, subgroup analyses (if any), whether outcome was identified as primary or secondary) and (2) spin (reporting practices that distort the interpretation of results so they are viewed more favourably). Of 67 i