Limited clinical activity has been seen in osteosarcoma (OS) patients treated with immune checkpoint inhibitors (ICI). https://www.selleckchem.com/products/edralbrutinib.html To gain insights into the immunogenic potential of these tumors, we conducted whole genome, RNA, and T-cell receptor sequencing, immunohistochemistry and reverse phase protein array profiling (RPPA) on OS specimens from 48 pediatric and adult patients with primary, relapsed, and metastatic OS. Median immune infiltrate level was lower than in other tumor types where ICI are effective, with concomitant low T-cell receptor clonalities. Neoantigen expression in OS was lacking and significantly associated with high levels of nonsense-mediated decay (NMD). Samples with low immune infiltrate had higher number of deleted genes while those with high immune infiltrate expressed higher levels of adaptive resistance pathways. PARP2 expression levels were significantly negatively associated with the immune infiltrate. Together, these data reveal multiple immunosuppressive features of OS and suggest immunotherapeutic opportunities in OS patients.An amendment to this paper has been published and can be accessed via a link at the top of the paper.5'-hydroxymethylcytosine (5hmC), an important 5'-cytosine modification, is altered highly in order in male meiotic prophase. However, the regulatory mechanism of this dynamic change and the function of 5hmC in meiosis remain largely unknown. Using a knockout mouse model, we showed that UHRF1 regulated male meiosis. UHRF1 deficiency led to failure of meiosis and male infertility. Mechanistically, the deficiency of UHRF1 altered significantly the meiotic gene profile of spermatocytes. Uhrf1 knockout induced an increase of the global 5hmC level. The enrichment of hyper-5hmC at transcriptional start sites (TSSs) was highly associated with gene downregulation. In addition, the elevated level of the TET1 enzyme might have contributed to the higher 5hmC level in the Uhrf1 knockout spermatocytes. Finally, we reported Uhrf1, a key gene in male meiosis, repressed hyper-5hmC by downregulating TET1. Furthermore, UHRF1 facilitated RNA polymerase II (RNA-pol2) loading to promote gene transcription. Thus our study demonstrated a potential regulatory mechanism of 5hmC dynamic change and its involvement in epigenetic regulation in male meiosis.BACKGROUND Osteoporosis is a metabolic osteopathy characterized by abnormal bone mass and microstructure that has become a public health problem worldwide. Cuscutae semen (CS) is a traditional Chinese medicine (TCM) that has a positive effect on the prevention and treatment of osteoporosis. However, the mechanism of CS is unclear. Therefore, this study aimed to reveal the possible molecular mechanism involved in the effects of CS on osteoporosis based on a network pharmacology approach. MATERIAL AND METHODS The inactive and active ingredients of CS were identified by searching the pharmacology analysis platform of the Chinese medicine system (TCMSP), and the targets of osteoporosis were screened in the relevant databases, such as GeneCards, PubMed, and the Comparative Toxicogenomics Database (CTD). The network of "medicine-ingredients-disease-targets (M-I-D-T)" was established by means of network pharmacology, and the key targets and core pathways were determined by R analysis. Molecular docking methods were n, may be the most crucial ingredient of CS for the treatment of osteoporosis. Additionally, the network pharmacology method provided a novel research approach to analyze the function of complex ingredients.The colloidal CdSe/ZnS quantum dots (QDs) in the PMMA polymer film with different QDs concentrations were fabricated. The influence of QDs concentration and excitation pump energy on nonlinear optical (NLO) properties of PMMA capped CdSe/ZnS QDs was investigated by the Z-scan technique with nanosecond laser pulses in the near-infrared spectral band. A large effective nonlinear absorption coefficient (β eff  ∼ -10-13 esu) due to the saturable absorption was observed. It was found that the appropriate concentration could lead to the reinforcement of NLO effect. In addition, the impact of the excitation energy on the nonlinear refractive index n 2, real and imaginary parts of the third-order nonlinear optical susceptibility was also performed. This study involving the light-matter interactions in the colloidal quantum dots will benefit potential NLO-based applications of optoelectronics, optical modulation and photonics.In this paper, we propose a miniaturized monolithic bandpass filter utilizing an air-filled half-mode waveguide and an inward curving split ring resonator array in the millimeter-wave band. The waveguide blocks the wave below cutoff frequency and the uniplanar array forms a rejection band above the transmission band. The microfabrication process of the filter adopts photoimageable technology and the combination of films with different thicknesses to build a 3D structure. The measured prototype has a center frequency at 65.5 GHz with a 3 dB fractional bandwidth of 30.7%. The minimum insertion loss is 2.1 dB. The proposed component offers excellent performance including a wide transmission band, a low pass-band insertion loss, an excellent isolation in the stop-band, and a steep roll-off at the upper cutoff frequency. Besides, due to the scalability of the waveguide and periodic array, this filter can be adapted for other frequency ranges.We systematically developed a prognostic model for pancreatic cancer that was compatible across different transcriptomic platforms and patient cohorts. After performing quality control measures, we used seven microarray datasets and two RNA sequencing datasets to identify consistently dysregulated genes in pancreatic cancer patients. Weighted gene co-expression network analysis was performed to explore the associations between gene expression patterns and clinical features. The least absolute shrinkage and selection operator (LASSO) and Cox regression were used to construct a prognostic model. We tested the predictive power of the model by determining the area under the curve of the risk score for time-dependent survival. Most of the differentially expressed genes in pancreatic cancer were enriched in functions pertaining to the tumor immune microenvironment. The transcriptome profiles were found to be associated with overall survival, and four genes were identified as independent prognostic factors. A prognostic risk score was then proposed, which displayed moderate accuracy in the training and self-validation cohorts.