https://www.selleckchem.com/products/Gefitinib.html raged 38.7 ± 0.05°C across treatments and was 0.2 to 0.3°C higher in the Mat treatment than in Baseline at h 10, 11, 20, 21, and 22. These results collectively indicate that the Mat treatment did not effectively reduce indicators of heat load compared with Baseline. In contrast, Targeted Air and Optimized Baseline were both effective but differed in aspects of efficiency. Targeted Air used the least amount of water but the most energy of all options tested. In conclusion, more efficient heat abatement options were identified, particularly an Optimized Baseline strategy, which cut water use in half, required the same amount of energy as the Baseline, and maintained similar physiological and behavioral responses in cows. It is well established that intravenous administration of lipopolysaccharides (LPS)-cell wall components from gram-negative bacteria-induce acute inflammatory responses in dairy calves, but the effect of oral administration of LPS to dairy calves is currently unknown. To evaluate the effects of oral administration of LPS derived from Escherichia coli (serotype O111B4) on innate immune responses in milk-fed Holstein calves, 20 visually healthy calves (34 ± 1 d) received 4 L of milk with LPS (12 μg/kg body weight; n = 10; LPS) or without LPS (n = 10; control) at the morning feeding. Samples were collected at 0.5 h before the morning feeding and at 3, 6, 24, 48, 72, and 168 h after the morning feeding to measure rectal temperature and heart rate, as well as plasma-negative and plasma-positive acute phase proteins (i.e., haptoglobin, serum amyloid A, albumin, total protein, and fibrinogen) and immunoglobulin concentrations (IgG, IgM, and IgA). None of these measurements was affected by the oral administration of LPS. Oral administration of LPS at 12 μg/kg of body weight did not induce an acute inflammatory response in visually healthy milk-fed Holstein calves when administered in milk. An SNP-BLUP model