https://www.selleckchem.com/products/gsk2830371.html COVID-19 induces a hypercoagulable state with early case reports of death from undetected venous thromboembolism. Various protocols and consensus statements have been proposed to address the optimal prophylaxis strategy for hospitalized patients. We offer our single institution experience with a d-dimer driven prophylaxis model with no deep vein thrombosis identified on discharge lower extremity ultrasounds.Cumulative evidence suggests that β-amyloid and oxidative stress are closely related with each other and play key roles in the process of Alzheimer's disease (AD). Multitarget regulation of both pathways might represent a promising therapeutic strategy. Here, a series of selenium-containing compounds based on ebselen and verubecestat were designed and synthesized. Biological evaluation showed that 13f exhibited good BACE-1 inhibitory activity (IC50 = 1.06 μΜ) and potent GPx-like activity (ν0 = 183.0 μM min-1). Aβ production experiment indicated that 13f could reduce the secretion of Aβ1-40 in HEK APPswe 293T cells. Moreover, 13f exerted a cytoprotective effect against the H2O2 or 6-OHDA caused cell damage via alleviation of intracellular ROS, mitochondrial dysfunction, Ca2+ overload and cell apoptosis. The mechanism studies indicated that 13f exhibited cytoprotective effect by activating the Keap1-Nrf2-ARE pathway and stimulating downstream anti-oxidant protein including HO-1, NQO1, TrxR1, GCLC, and GCLM. In addition, 13f significantly reduced the production of NO and IL-6 induced by LPS in BV2 cells, which confirmed its anti-inflammatory activity as a Nrf2 activator. The BBB permeation assay predicted that 13f was able to cross the BBB. In summary, 13f might be a promising multi-target-directed ligand for the treatment of AD.The occurrence of resistances in Gram negative bacteria is steadily increasing to reach extremely worrying levels and one of the main causes of resistance is the massive spread of very eff