https://www.selleckchem.com/btk.html Finally, the treatment with AXO extract caused upregulation of CEBPA, CEBPB, CEBPE, SPI1, CDKN1A, and CDKN2C, and downregulation of c-MYC. Our data clearly show the potential anticancer activity of Ambystoma mexicanum on HL-60 cells and suggest that it could help develop promising therapeutic agents for the treatment of acute myeloid leukemia.There is an urgent need for safe and effective approaches to combat COVID-19. Here, we asked whether lessons learned from nanotoxicology and nanomedicine could shed light on the current pandemic. SARS-CoV-2, the causative agent, may trigger a mild, self-limiting disease with respiratory symptoms, but patients may also succumb to a life-threatening systemic disease. The host response to the virus is equally complex and studies are now beginning to unravel the immunological correlates of COVID-19. Nanotechnology can be applied for the delivery of antiviral drugs or other repurposed drugs. Moreover, recent work has shown that synthetic nanoparticles wrapped with host-derived cellular membranes may prevent virus infection. We posit that nanoparticles decorated with ACE2, the receptor for SARS-CoV-2, could be exploited as decoys to intercept the virus before it infects cells in the respiratory tract. However, close attention should be paid to biocompatibility before such nano-decoys are deployed in the clinic.The interferon-inducible myxovirus resistance B (MxB) protein has been reported to inhibit HIV-1 and herpesviruses by blocking the nuclear import of viral DNA. Here, we report a new antiviral mechanism in which MxB restricts the nuclear import of HIV-1 regulatory protein Rev, and as a result, diminishes Rev-dependent expression of HIV-1 Gag protein. Specifically, MxB disrupts the interaction of Rev with the nuclear transport receptor, transportin 1 (TNPO1). Supporting this, the TNPO1-independent Rev variants become less restricted by MxB. In addition, HIV-1 can overcome this inhibition by Mx