https://www.selleckchem.com/ Rootletin is the main component of the ciliary rootlet and functions as a centriole linker connecting the two mother centrioles. Despite the functional importance of rootletin, the molecular architecture of the rootletin filament and its assembly mechanism are poorly understood. Here, we identify the coiled-coil domain 3 (CCD3) of rootletin as the key domain for its cellular function. The crystal structure of the CCD31108-1317 fragment containing 28 heptad repeats and one hendecad repeat reveals that it forms a parallel coiled-coil dimer spanning approximately 300 Å in length. Crosslinking experiments and biophysical analyses of the minimal functional region of CCD3 (CCD3-6) suggest that CCD3-6 is structurally dynamic and may be important for oligomer formation. We also show that oligomerization-defective CCD3 mutants fail in centrosomal localization and centriole linkage, suggesting that rootletin oligomerization may be important for its function. RNA polymerase transcribes certain genomic loci with higher errors rates. These Transcription Error-Enriched genomic Loci (TEELs) have implications in disease. Current deep-sequencing methods cannot distinguish TEELs from post-transcriptional modifications, stochastic transcription errors, and technical noise, impeding efforts to elucidate the mechanisms linking TEELs to disease. Here, we describe background Error Model-coupled Precision nuclear run-on Circular-sequencing (EmPC-seq) to discern genomic regions enriched for transcription misincorporations. EmPC-seq innovatively combines a nuclear run-on assay for capturing nascent RNA before post-transcriptional modifications, a circular-sequencing step that sequences the same nascent RNA molecules multiple times to improve accuracy, and a statistical model for distinguishing error-enriched regions amongst stochastic polymerase errors. Applying EmPC-seq to the ribosomal RNA transcriptome, we show that TEELs of RNA Polymerase I are not randomly d