https://www.selleckchem.com/pharmacological_epigenetics.html All parents who were heterozygous carriers of the identified loss-of-function variants were healthy and did not show any clinical symptoms, indicating that the type of mutation in determines the pattern of inheritance. Our finding that homozygous, loss-of-function variants in DNM1 cause DEE expands the spectrum of pathogenic variants in DNM1. All parents who were heterozygous carriers of the identified loss-of-function variants were healthy and did not show any clinical symptoms, indicating that the type of mutation in DNM1 determines the pattern of inheritance. Identifying genetic disease-susceptible individuals through population screening is considered as a promising approach for disease prevention. DNA mismatch repair (MMR) genes including , , and play essential roles in maintaining microsatellite stability through DNA mismatch repair, and pathogenic variation in MMR genes causes microsatellite instability and is the genetic predisposition for cancer as represented by the Lynch syndrome. While the prevalence and spectrum of MMR variation has been extensively studied in cancer, it remains largely elusive in the general population. Lack of the knowledge prevents effective prevention for MMR variation-caused cancer. In the current study, we addressed the issue by using the Chinese population as a model. We performed extensive data mining to collect MMR variant data from 18 844 ethnic Chinese individuals and comprehensive analyses for the collected MMR variants to determine its prevalence, spectrum and features of the MMR data in the Chinese population. We identified 17 687 distinct MMR variants. We observed substantial differences of MMR variation between the general Chinese population and Chinese patients with cancer, identified highly Chinese-specific MMR variation through comparing MMR data between Chinese and non-Chinese populations, predicted the enrichment of deleterious variants in the unclassified