Quantum Ergodicity in the Many-Body Localization Problem. Here, we show the design, fabrication and working principle of the chip-and-dip flow device along with a specific application consisting in the determination of β-lactamase activity and cortisol. The simplicity, robustness and multiplexing capability of the chip-and-dip device will allow it to be used for POC diagnostics.Caspases are proteases conserved throughout Metazoans and responsible for initiating and executing the apoptotic program. Currently, there are over 1800 known apoptotic caspase substrates, many of them known regulators of cell proliferation and death, which makes them attractive therapeutic targets. However, most caspase substrates are by-standers, and identifying novel apoptotic mediators amongst all caspase substrates remains an unmet need. Here, we conducted an in silico search for significant apoptotic caspase targets across different species within the Vertebrata subphylum, using different criteria of conservation combined with structural features of cleavage sites. We observed that P1 aspartate is highly conserved while the cleavage sites are extensively variable and found that cleavage sites are located primarily in coiled regions composed of hydrophilic amino acids. Using the combination of these criteria, we determined the final list of the 107 most relevant caspase substrates including 30 novel targets previously unknown for their role in apoptosis and cancer. These newly identified substrates can be potential regulators of apoptosis and candidates for anti-tumor therapy.The influence of sensitive porous films obtained by pulsed laser deposition (PLD) on the response of surface acoustic wave (SAW) sensors on hydrogen at room temperature (RT) was studied. Monolayer films of TiO2 and bilayer films of Pd/TiO2 were deposited on the quartz substrates of SAW sensors. By varying the oxygen and argon pressure in the PLD deposition chamber, different morphologies of the sensitive films were obtained, which were analyzed based on scanning electron microscopy (SEM) images. SAW sensors were realized with different porosity degrees, and these were tested at different hydrogen concentrations. It has been confirmed that the high porosity of the film and the bilayer structure leads to a higher frequency shift and allow the possibility to make tests at lower concentrations. Thus, the best sensor, Pd-1500/TiO2-600, with the deposition pressure of 600 mTorr for TiO2 and 1500 mTorr for Pd, had a frequency shift of 1.8 kHz at 2% hydrogen concentration, a sensitivity of 0.10 Hz/ppm and a limit of detection (LOD) of 1210 ppm. SAW sensors based on such porous films allow the detection of hydrogen but also of other gases at RT, and by PLD method such sensitive porous and nanostructured films can be easily developed.Internationally accepted classifications of malignant tumors, developed by the World Health Organization (WHO) and the Union for International Cancer Control (UICC), are based on the histotype, site of origin, morphologic grade, and spread of cancer throughout the body. https://www.selleckchem.com/TGF-beta.html The WHO classifications are the foundation of cancer diagnosis and the starting point for cancer management. Starting in 2000, the WHO classifications began to include biologic and molecular-genetic features. These developments are having a strong impact on cancer diagnosis and treatment, and this impact is amplifying, given the advances in cancer genomics. Molecular-genetic profiling can be used to refine existing classifications of tumors and, for a small but increasing number of cancers, even determine the treatment irrespective of histotype. Here I discuss how cancer classifications may change in the era of cancer genomics.Calmodulin (CaM) is a Ca2+-sensor that regulates a wide variety of target proteins, many of which interact through short basic helical motifs bearing two hydrophobic 'anchor' residues. CaM comprises two globular lobes, each containing a pair of EF-hand Ca2+-binding motifs that form a Ca2+-induced hydrophobic pocket that binds an anchor residue. A central flexible linker allows CaM to accommodate diverse targets. Several reported CaM interactors lack these anchors but contain Lys/Arg-rich polybasic sequences adjacent to a lipidated N- or C-terminus. Ca2+-CaM binds the myristoylated N-terminus of CAP23/NAP22 with intimate interactions between the lipid and a surface comprised of the hydrophobic pockets of both lobes, while the basic residues make electrostatic interactions with the negatively charged surface of CaM. Ca2+-CaM binds farnesylcysteine, derived from the farnesylated polybasic C-terminus of KRAS4b, with the lipid inserted into the C-terminal lobe hydrophobic pocket. CaM sequestration of the KRAS4b farnesyl moiety disrupts KRAS4b membrane association and downstream signaling. Phosphorylation of basic regions of N-/C-terminal lipidated CaM targets can reduce affinity for both CaM and the membrane. Since both N-terminal myristoylated and C-terminal prenylated proteins use a Singly Lipidated Polybasic Terminus (SLIPT) for CaM binding, we propose these polybasic lipopeptide elements comprise a non-canonical CaM-binding motif.The complex polymicrobial composition of human gut microbiota plays a key role in health and disease. Lachnospiraceae belong to the core of gut microbiota, colonizing the intestinal lumen from birth and increasing, in terms of species richness and their relative abundances during the host's life. Although, members of Lachnospiraceae are among the main producers of short-chain fatty acids, different taxa of Lachnospiraceae are also associated with different intra- and extraintestinal diseases. Their impact on the host physiology is often inconsistent across different studies. Here, we discuss changes in Lachnospiraceae abundances according to health and disease. With the aim of harnessing Lachnospiraceae to promote human health, we also analyze how nutrients from the host diet can influence their growth and how their metabolites can, in turn, influence host physiology.Due to its unique properties, collagen is used in the growing fields of pharmaceutical and biomedical devices, as well as in the fields of nutraceuticals, cosmeceuticals, food and beverages. Collagen also represents a valid resource for bioplastics and biomaterials, to be used in the emerging health sectors. Recently, marine organisms have been considered as promising sources of collagen, because they do not harbor transmissible disease. In particular, fish biomass as well as by-catch organisms, such as undersized fish, jellyfish, sharks, starfish, and sponges, possess a very high collagen content. The use of discarded and underused biomass could contribute to the development of a sustainable process for collagen extraction, with a significantly reduced environmental impact. This addresses the European zero-waste strategy, which supports all three generally accepted goals of sustainability sustainable economic well-being, environmental protection, and social well-being. https://www.selleckchem.com/TGF-beta.html A zero-waste strategy would use far fewer new raw materials and send no waste materials to landfills.