https://www.selleckchem.com/products/gdc-1971.html The energy and charge-transfer processes in photosystem I (PS I) complexes isolated from cyanobacteria Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 were investigated by pump-to-probe femtosecond spectroscopy. The formation of charge-transfer (CT) states in excitonically coupled chlorophyll a complexes (exciplexes) was monitored by measuring the electrochromic shift of β-carotene in the spectral range 500-510 nm. The excitation of high-energy chlorophyll in light-harvesting antenna of both species was not accompanied by immediate appearance of an electrochromic shift. In PS I from T. elongatus, the excitation of long-wavelength chlorophyll (LWC) caused a pronounced electrochromic effect at 502 nm assigned to the appearance of CT states of chlorophyll exciplexes. The formation of ion-radical pair P700+A1- at 40 ps was limited by energy transfer from LWC to the primary donor P700 and accompanied by carotenoid bleach at 498 nm. In PS I from Synechocystis 6803, the excitation at 720 nm produced an immediate bidentate bleach at 690/704 nm and synchronous carotenoid response at 508 nm. The bidentate bleach was assigned to the formation of primary ion-radical state PB+Chl2B-, where negative charge is localized predominantly at the accessory chlorophyll molecule in the branch B, Chl2B. The following decrease of carotenoid signal at ~ 5 ps was ascribed to electron transfer to the more distant molecule Chl3B. The reduction of phylloquinone in the sites A1A and A1B was accompanied by a synchronous blue-shift of the carotenoid response to 498 nm, pointing to fast redistribution of unpaired electron between two branches in favor of the state PB+A1A-.BACKGROUND Black individuals with type 2 diabetes suffer disproportionate morbidity and mortality relative to whites with type 2 diabetes, irrespective of health insurance coverage. OBJECTIVE Examine the impact of a primary care-embedded clinical pharmacist-led interve