https://www.selleckchem.com/products/2-deoxy-d-glucose.html Bacterial infections occur when wound healing fails to reach the final stage of healing, which is usually hindered by the presence of different pathogens. Different topical antimicrobial agents are used to inhibit bacterial growth due to antibiotic failure in reaching the infected site, which is accompanied very often by increased drug resistance and other side effects. In this review, we focus on antimicrobial peptides (AMPs), especially those with a high potential of efficacy against multidrug-resistant and biofilm-forming bacteria and fungi present in wound infections. Currently, different AMPs undergo preclinical and clinical phase to combat infection-related diseases. AMP dendrimers (AMPDs) have been mentioned as potent microbial agents. Various AMP delivery strategies that are used to combat infection and modulate the healing rate-such as polymers, scaffolds, films and wound dressings, and organic and inorganic nanoparticles-have been discussed as well. New technologies such as Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated protein (CRISPR-Cas) are taken into consideration as potential future tools for AMP delivery in skin therapy.Human Respiratory Syncytial Virus and Human Rhinovirus are the most frequent cause of respiratory tract infections in infants and children and are major triggers of acute viral bronchiolitis, wheezing and asthma exacerbations. Here, we will discuss the application of the powerful tools of systems biology to decode the molecular mechanisms that determine risk for infection and subsequent asthma. An important conceptual advance is the understanding that the innate immune system is governed by a Bow-tie architecture, where diverse input signals converge onto a few core pathways (e.g., IRF7), which in turn generate diverse outputs that orchestrate effector and regulatory functions. Molecular profiling studies in children with severe exacerbations of