https://www.selleckchem.com/products/tj-m2010-5.html Mechanobiology at the cellular level is concerned with what phenotypes that cells exhibit to maintain homeostasis in their normal physiological mechanical environment, as well as what phenotypical changes that cells have to make when their environment is altered. Mechanobiology at the molecular level aims to understand the molecular underpinning of how cells sense, respond to, and adapt to mechanical cues in their environment. In this Perspective, we use our work inspired by and in collaboration with Professor Shu Chien as an example with which we connect the mechanobiology between the cellular and molecular levels. We discuss how physical forces acting on intracellular proteins may impact protein-protein interaction, change protein conformation, crosstalk with biochemical signaling molecules, induce mechanotransduction, and alter the cell structure and function. © Author(s).Background Anxiety disorders are the most common neuropathologies worldwide, but the precise neuronal mechanisms that underlie these disorders remain unknown. The hippocampus plays a role in mediating anxiety-related responses, which can be modeled in rodents using behavioral assays, such as the elevated plus maze. Yet, the molecular markers that underlie affect-related behavior on the elevated plus maze are not well understood. Methods We used herpes simplex virus vector delivery to overexpress extracellular signal-regulated kinase-2, a signaling molecule known to be involved in depression and anxiety, within the dorsal hippocampus of adult Sprague-Dawley male rats. Three days post virus delivery, we assessed anxiety-like responses on the elevated plus maze or general locomotor activity on the open field test. Results When compared to controls, rats overexpressing extracellular signal-regulated kinase-2 in the dorsal hippocampus displayed an anxiolytic-like phenotype, per increases in time spent in the open arms, and less time in the closed a