https://www.selleckchem.com/products/FK-506-(Tacrolimus).html Ultraviolet (UV) irradiation is an abiotic pathway for the transformation of complex phosphorus (P) components into inorganic P in ecosystems. To explore the effect of UV irradiation on organic P (OP) bioavailability in the water level fluctuation zone (WLFZ) soil, we collected representative soil samples from WLFZ of the Pengxi River, a tributary of the TGR, China. We determined the contents of different forms of OP in the WLFZ soil through sequential extraction. The bioavailability of different forms of OP and the effect of UV light were characterised using a combination of enzymatic hydrolysis and UV irradiation. The OP contents of the different extracts (Po) were ranked as NaOH-Po > NaHCO3-Po > H2O-Po, whereas those of enzymatically hydrolysable organic P (EHP) were ranked as NaOH-EHP > NaHCO3-EHP > H2O-EHP. UV irradiation was found to improve OP bioavailability, as demonstrated by increased levels of UV-sensitive P (UV-P) and EHP in the extracts after irradiation. The total contents of bioavailable Po in extracts were 5.6-35.3% higher after UV irradiation than before irradiation. Thus, the effect of UV irradiation on the OP bioavailability and release activity cannot be neglected in TGR WLFZ soil.The novelty of this study is to explore the effect of temperature varied biochar on the properties of biochar/polymers composites. Rice husk biochar (RB) samples were prepared at different pyrolysis temperatures and injection molding was used to prepare RB/high-density polyethylene (HDPE) composites. Additionally, ultimate analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), pore structure characteristics, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile properties, and dynamic mechanical analysis (DMA) were used to characterize these RB and RB/HDPE composites samples. The results validated that RB obtained at