Our results show that liquid-solid transitions in dispersions are not universal, but depend on particle size.Hematite microparticles are becoming increasingly important components in the soft matter field. The remarkable combination of magnetic and photocatalytic properties that characterize them, coupled with the variety of uniform and monodisperse shapes that they can be synthesized in, makes them a one of a kind colloidal model system. Thanks to these properties, hematite microparticles have been recently applied in several important soft matter applications, spanning from novel colloidal building blocks for self-assembly to necessary tools to investigate and understand fundamental problems. In this review article we provide a detailed overview of the traditional methods available for the preparation of hematite microparticles of different shapes, devoting special attention on some of the most common hiccups that could hider a successful synthesis. We furthermore review the particles' most important physico-chemical properties and their most relevant applications in the soft matter field.Systems chemistry focuses on emergent properties in a complex matter. To design and demonstrate such emergent properties like autonomous motion in nanomotors as an output of an Operando Systems Chemistry Algorithm (OSCAL), we employ a 2-component system comprising porous organic frameworks (POFs) and soft-oxometalates (SOMs). The OSCAL governs the motion of the nanocarpets by the coding and reading of information in an assembly/disassembly cascade switched on by a chemical stimulus. Assembly algorithm docks SOMs into the pores of the POFs of the nanocarpet leading to the encoding of supramolecular structural information in the SOM-POF hybrid nanocarpet. Input of a chemical fuel to the system induces a catalytic reaction producing propellant gases and switches on the disassembly of SOMs that are concomitantly released from the pores of the SOM-POF nanocarpets producing a ballast in the system as a read-out of the coded information acquired in the supramolecular assembly. The OSCAL governs the motion of the nanocarpets in steps. The assembly/disassembly of SOM-POFs, releasing SOMs from the pores of SOM-POFs induced by a catalytic reaction triggered by a chemical stimulus coupled with the evolution of gas are the input. The output is the autonomous linear motion of the SOM-POF nanocarpets resulting from the read-out of the input information. This work thus manifests the operation of a designed Systems Chemistry algorithm which sets supramolecularly assembled SOM-POF nanocarpets into autonomous ballistic motion.Increased production and use of plastics has resulted in growth in the amount of plastic debris accumulating in the environment, potentially fragmenting into smaller pieces. Fragments less then 5 mm are typically defined as microplastics, while fragments less then 0.1 μm are defined as nanoplastics. Over the past decade, an increasing number of studies have reported the occurrence and potential hazards of plastic particles in the aquatic environment. However, less is understood about plastic particles in the terrestrial environment and specifically how much plastic accumulates in soils, the possible sources, potential ecological impacts, interaction of plastic particles with the soil environment, and appropriate extraction and analytical techniques for assessing the above. In this review, a comprehensive overview and a critical perspective on the current state of knowledge on plastic pollution in the soil environment is provided detailing known sources, occurrence and distribution, analytical techniques used for identification and quantification and the ecological impacts of particles on soil. In addition, knowledge gaps are identified along with suggestions for future research.Cancer cells shed into biofluids extracellular vesicles (EVs) - nanoscale membrane particles carrying diagnostic information. EVs shed by heterogeneous populations of tumor cells offer a unique opportunity to access biologically important aspects of disease complexity. Glioblastoma (GBM) exemplifies cancers that are incurable, because their temporal dynamics and molecular complexity evade standard diagnostic methods and confound therapeutic efforts. Liquid biopsy based on EVs offers unprecedented real-time access to complex tumour signatures, but it is not used clinically due to inefficient testing methods. We report on a nanostructured microfluidic-device that employs SERS for unambiguous identification of EVs from different GBM cell populations. The device features fabless plasmonic nanobowties for label-free and non-immunological SERS detection of EVs. https://www.selleckchem.com/products/tocilizumab.html This nanobowtiefluidic device combines the advanced characteristics of plasmonic nanobowties with a high throughput sample-delivery system for concentration of the analytes in the vicinity of the detection site. We showed theoretically and experimentally that the fluidic device assists the monolayer distribution of the EVs, which dramatically increase the probability of EV's existence in the laser illumination area. In addition, the optimized fabless nanobowtie structures with an average electric field enhancement factor of 9 × 105 achieve distinguishable and high intensity SERS signals. Using the nanobowtiefluidic and micro-Raman equipment, we were able to distinguish a library of peaks expressed in GBM EV subpopulations from two distinct glioblastoma cell lines (U373, U87) and compare them to those of non-cancerous glial EVs (NHA) and artificial homogenous vesicles (e.g. DOPC/Chol). This cost-effective and easy-to-fabricate SERS platform and a portable sample-delivery system for discerning the sub-population of GBM EVs and non-cancerous glial EVs may have broader applications to different types of cancer cells and their molecular/oncogenic signature.The sliding dynamics of one- or multi-ring structures along a semiflexible cyclic polymer in radial poly[n]catenanes is investigated using molecular dynamics simulations. The fixed and fluctuating (non-fixed) semiflexible central cyclic polymers are considered, respectively. With increasing bending energy of the central cyclic polymer, for the fixed case, the diffusion coefficient increases monotonically due to the reduction of the tortuous sliding path, while for the fluctuating case, the diffusion coefficient decreases. This indicates that the contribution of the polymer fluctuation is suppressed by a further increase in the stiffness of the central cyclic chain. Compared with the one ring case, the mean-square displacement of the multiple rings exhibits a unique sub-diffusive behavior at intermediate time scales due to the repulsion between two neighboring rings. In addition, for the multi-ring system, the whole set of rings exhibit relatively slower diffusion, but faster local dynamics of threading rings and rotational diffusion of the central cyclic polymer arise.