https://www.selleckchem.com/products/ei1.html The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one-dimensional (1D) rhodium-dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X-ray photoelectron spectroscopy (XPS) revealed that the room-temperature (RT) phase is in a mixed-valence state, and therefore, the drastic changes originate from the mixed-valence state appearing in the RT phase. is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large-amplitude vibration of the Rh-Rh bonds. #link# From these results, a possible mechanism for the appearance of the mixed-valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d-band to the semiquinonato π* orbital coupled with the large-amplitude vibration of the Rh-Rh bonds. To explore the ameliorating effects of low-intensity pulsed ultrasound (LIPUS) on Sprague Dawley rat myelosuppression induced by cell cycle specificity drugs (docetaxel, mitotic phase sensitive; and etoposide, gap 2 phase sensitive). Rats were respectively administered docetaxel (100 mg/kg) or etoposide (110 mg/kg) by intraperitoneal injection for 4 consecutive days. Then the rats were divided randomly into a LIPUS group and a non-LIPUS group. In the LIPUS group, the right femoral metaphysis of rats was treated by LIPUS (acoustic intensity, 200 mW/cm ; frequency, 0.3 MHz; and duty cycle, 20%) for 20 minutes on 7 consecutive days from day 5. The rats of the non-LIPUS group were treated without ultrasound output. A blood cell count, an enzyme-linked immunosorbent assay, a real-time quantitative polymerase chain reaction, and hematoxylin-eosin staining were applied to detect the results. Low-intensity pulsed ultrasound significantly promoted the counts of bo