https://www.selleckchem.com/products/eidd-1931.html Tight regulation of the APC/C-Cdc20 ubiquitin ligase that targets cyclin B1 for degradation is important for mitotic fidelity. The spindle assembly checkpoint (SAC) inhibits Cdc20 through the mitotic checkpoint complex (MCC). In addition, phosphorylation of Cdc20 by cyclin B1-Cdk1 independently inhibits APC/C-Cdc20 activation. This creates a conundrum for how Cdc20 is activated before cyclin B1 degradation. Here, we show that the MCC component BubR1 harbors both Cdc20 inhibition and activation activities, allowing for cross-talk between the two Cdc20 inhibition pathways. Specifically, BubR1 acts as a substrate specifier for PP2A-B56 to enable efficient Cdc20 dephosphorylation in the MCC. A mutant Cdc20 mimicking the dephosphorylated state escapes a mitotic checkpoint arrest, arguing that restricting Cdc20 dephosphorylation to the MCC is important. Collectively, our work reveals how Cdc20 can be dephosphorylated in the presence of cyclin B1-Cdk1 activity without causing premature anaphase onset.Lung ultrasound is increasingly used in emergency departments, medical wards, and critical care units-adult, pediatric, and neonatal. In vitro and in vivo studies show that the number and type of artifacts visualized change with lung density. This has led to the idea of a quantitative lung ultrasound approach, opening up new prospects for use not only as a diagnostic but also as a monitoring tool. Consequently, the multiple scoring systems proposed in the last few years have different technical approaches and specific clinical indications, adaptable for more or less time-dependent patients. However, multiple scoring systems may generate confusion among physicians aiming at introducing lung ultrasound in their clinical practice. This review describes the various lung ultrasound scoring systems and aims to clarify their use in different settings, focusing on technical aspects, validation with reference techniques, and clinical