https://www.selleckchem.com/products/tegatrabetan.html In addition, stoppage of the bending response occasionally occurred during development of a new principal bend, and in this situation, formation of a new reverse bend did not occur. This observation indicates that the reverse bend is always active, opposing the principal bend. The results show that mechanical strain of bending is a central component regulating the bend oscillation, and switching of the bend direction appears to be controlled, in part, by the velocity of wave propagation.The aim of this study was to investigate the mechanical and metabolic reasons for the spontaneous gait/speed choice when ascending a short flight of stairs, where walking on every step or running on every other step are frequently interchangeable options. The kinematics, oxygen uptake (V̇O2 ), ventilation and heart rate of 24 subjects were sampled during climbing one and two flights of stairs while using the two gaits. Although motor acts were very short in time (5-22 s), metabolic kinetics, extending into the 250 s after the end of climbing, consistently reflected the (metabolic equivalent of the) required mechanical energy and allowed comparison of the two ascent choices despite a 250% higher mechanical power associated with running, measured [Formula see text], ventilation and heart rate peaked at only +25% with respect to walking, and in both gaits at much lower values than [Formula see text] despite predictions based on previous gradient locomotion studies. Mechanical work and metabolic cost of transport, as expected, showed a similar increase (+25%) in running. For stairs up to a height of 4.8 m (30 steps at 53% gradient), running makes us consume slightly more calories than walking, and in both gaits with no discomfort at all. The cardio-respiratory-metabolic responses similarly delay and dampen the replenishment of phosphocreatine stores, which were depleted much faster during the impulsive, highly powered mechanical even