https://www.selleckchem.com/products/acetosyringone.html Clusters and nanodroplets hold the promise of enhancing high-order nonlinear optical effects due to their high local density. However, only moderate enhancement has been demonstrated to date. Here, we report the observation of energetic electrons generated by above-threshold ionization (ATI) of helium (He) nanodroplets which are resonantly excited by ultrashort extreme ultraviolet (XUV) free-electron laser pulses and subsequently ionized by near-infrared (NIR) or near-ultraviolet (UV) pulses. The electron emission due to high-order ATI is enhanced by several orders of magnitude compared with He atoms. The crucial dependence of the ATI intensities with the number of excitations in the droplets suggests a local collective enhancement effect.Electric fields were applied to multiferroic TbMnO_3 single crystals to control the chiral domains, and the domain relaxation was studied over 8 decades in time by means of polarized neutron scattering. A surprisingly simple combination of an activation law and the Merz law describes the relaxation times in a wide range of electric field and temperature with just two parameters, an activation-field constant and a characteristic time representing the fastest possible inversion. Over the large part of field and temperature values corresponding to almost 6 orders of magnitude in time, multiferroic domain inversion is thus dominated by a single process, the domain wall motion. Only when approaching the multiferroic transition other mechanisms yield an accelerated inversion.Quantum simulations with ultracold atoms in optical lattices open up an exciting path toward understanding strongly interacting quantum systems. Atom gas microscopes are crucial for this as they offer single-site density resolution, unparalleled in other quantum many-body systems. However, currently a direct measurement of local coherent currents is out of reach. In this Letter, we show how to achieve that by m