https://www.selleckchem.com/products/gw-441756.html Herein, we present a nickel-catalyzed three-component reductive alkylacylation of electron-deficient activated alkenes with tertiary alkyl bromides and acid anhydrides. This method enables the efficient preparation of a variety of ketones with broad substrate scope and high functionality tolerance starting from simple precursors. On the basis of the preliminary mechanistic investigations, a catalytic cycle involving the synergistic interaction of nickel, zinc, and MgCl2 is proposed as the major reaction pathway.Coastal reservoirs are potentially CH4 emission hotspots owing to their biogeochemical role as the sinks of anthropogenic carbon and nutrients. #link# Yet, the fine-scale spatial variations in CH4 concentrations and fluxes in coastal reservoirs remain poorly understood, hampering an accurate determination of reservoir CH4 budgets. In this study, we examined the spatial variability of diffusive CH4 fluxes and their drivers at a subtropical coastal reservoir in southeast China using high spatial resolution measurements of dissolved CH4 concentrations and physicochemical properties of the surface water. Overall, this reservoir acted as a consistent source of atmospheric CH4, with a mean diffusive flux of 16.1 μmol m-2 h-1. at the reservoir demonstrated considerable spatial variations, with the coefficients of variation ranging between 199 and 426% over the three seasons. The shallow water zone (comprising 23% of the reservoir area) had a disproportionately high contribution (56%) to the whole-reservoir diffusive CH4 emissions. Moreover, the mean CH4 flux in the sewage-affected sectors was significantly higher than that in the nonsewage-affected sectors. The results of bootstrap analysis further showed that increasing the sample size from 10 to 100 significantly reduced the relative standard deviation of mean diffusive CH4 flux from 73.7 to 3.4%. Our findings highlighted the role of sewage in governing the spati