https://www.selleckchem.com/products/tno155.html 001). There was a trend that the frequency of ROS1 rearrangement in LUAD with stage III-IV was higher than that in stage I-II (9.56%, 39/408 vs 2.50%, 1/40), although it did not reach significant difference (P = 0.135). 37 out of 56 cases of ROS1 rearranged LUAD showed solid (n = 20, 35.71%) and invasive mucinous adenocarcinoma (n = 17, 30.36%) pathological subtypes. The median OS for patients of ROS1 rearranged LUAD treated with TKIs (n = 29) was 49.69 months (95% CI 36.71, 62.67), compared with 32.55 months (95% CI 23.24, 41.86) for those who did not receive TKI treatment (n = 16) (P = 0.040). The NGS results on ROS1 rearrangement in all the 8 cases were concordant with FISH results. In conclusion, high prevalence of ROS1 rearrangements occurs in EGFR/ALK wild-type LUAD detected by FISH, especially in younger, female, late stage patients, and in histological subtypes of solid and invasive mucinous adenocarcinoma.In photosynthesis, the oxygen-evolving complex (OEC) of the pigment-protein complex photosystem II (PSII) orchestrates the oxidation of water. Introduction of the V185N mutation into the D1 protein was previously reported to drastically slow O2-release and strongly perturb the water network surrounding the Mn4Ca cluster. Employing time-resolved membrane inlet mass spectrometry, we measured here the H218O/H216O-exchange kinetics of the fast (Wf) and slow (Ws) exchanging substrate waters bound in the S1, S2 and S3 states to the Mn4Ca cluster of PSII core complexes isolated from wild type and D1-V185N strains of Synechocystis sp. PCC 6803. We found that the rate of exchange for Ws was increased in the S1 and S2 states, while both Wf and Ws exchange rates were decreased in the S3 state. Additionally, we used EPR spectroscopy to characterize the Mn4Ca cluster and its interaction with the redox active D1-Tyr161 (YZ). In the S2 state, we observed a greatly diminished multiline signal in the V185N-PSII that could be