https://www.selleckchem.com/products/kppep-2d.html With the development of the biomimicry approach, new and creative ideas have been established to solve problems in architectural design. In the designs based on this process, "nature" is used as a diverse data source for the transfer of these data to various processes, functions, materials, and structures. The primary purpose of this paper is to explore the development of biomimicry as an architectural approach, with a bibliometric review of research related to biomimicry and energy efficiency. Emphasis on the importance of the need for biomimicry in modern designs is another goal of this study. In this study, articles published in the Web of Science database (2010-2021) were analyzed. VOSviewer and SankeyMATIC software were used to represent the analysis results graphically. According to the results of this study, in addition to the inadequacy of biomimicry research, the need for further research became apparent. This review can serve as a reference for future studies to transfer natural phenomena to architecture in order to solve the problem of efficient energy consumption.Since the invention of the aircraft, there has been a need for better surface design to enhance performance. This thirst has driven many aerodynamicists to develop various types of aerofoils. Most researchers have strongly assumed that smooth surfaces would be more suitable for air transport vehicles. This ideology was shattered into pieces when biomimetics was introduced. Biomimetics emphasized the roughness of a surface instead of smoothness in a fluid flow regime. In this research, the most popular 0012 aerofoils of the National Advisory Committee for Aeronautics (NACA) are considered to improve them, with the help of a surface pattern derived from the biological environment. Original and biomimetic aerofoils were designed in three dimensions with the help of Solidworks software and analyzed in the computational flow domain using the commerci