As an eco-friendly alternative fuel material, ammonium dinitramide (ADN, NH₄N(NO₂)₂) is safe and stable at room temperature; however, it requires high purity for practical applications. A small amount of impurities can retard the catalytic decomposition of the monopropellant in the thruster, lower the specific impulse, and induce side effects such as clogging of the nozzle. Therefore, we purified NH₄N(NO₂)₂ by performing repeated extractions, adsorption by powdered activated carbon, and low-temperature extractions. In this study, we evaluated the chemical density of purified NH₄N(NO₂)₂ through Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and ion chromatography, and obtained a final purity of 99.8%. Furthermore, we fabricated a liquid fuel using high-purity NH₄N(NO₂)₂ as the main oxidizing agent, and can be prepared a mono-propellant formulation that exhibited decomposition at a minimum temperature of 148 °C.CuO nanoparticles (NPs) have been used for the antimicrobial agent against different pathogenic microorganisms. In this study, CuO NPs are immobilized on the surface of activated carbon fiber (ACF) with the enhancement of (3-aminopropyl)triethoxysilane (APTES) as an organic binder. The obtained fibers are evaluated by coating efficiency, structural deformation, and antimicrobial activities. In the results, APTES can improve the immobilization of CuO on the surface of ACF. Also, the curing of silane layers at high temperature leads to the high coating efficiencies as well as structural reinforcement. The samples with drying step after APTES coating step (denoted as DA-CuO) have the highest antimicrobial activity against both Escherichia coli and Staphylococcus aureus after 24 hours treatment, respectively.A hot filament chemical vapor deposition (HFCVD) method was adopted to deposit diamond films at deposition pressures ranging from 2-6 kPa. https://www.selleckchem.com/products/alantolactone.html The effects of deposition pressure on the deposition rate, phase structure, and microstructure of diamond films were investigated. The surface morphology, grain size, micro-structure, and growth rate of the diamond films were analyzed using scanning electron microscopy, X-ray diffraction (XRD), and Raman spectrometry. The experimental results showed that granules on the surface exhibited increasingly compact structure with increasing deposition pressure. The diamond films deposited at various pressures have good compactness, and the particles on the film surfaces are arranged in an ordered manner. All films exhibited orientation along the (111) plane, which was the significant characteristic XRD peak of each diamond film. The (111) peak intensity was the strongest for the film prepared at 2 kPa deposition pressure. Overall, the deposition rate and grain size decreased with increasing deposition pressure, provided other deposition conditions remained unchanged. However, the densification of the microstructure and the nucleation density increased with increasing deposition pressure. Secondary nucleation became more pronounced as deposition pressure increased, and grain size decreased as nucleation density increased.We designed novel thermally activated delayed fluorescence (TADF) materials by combining the electron donor 10,10-diphenyl-5,10-dihydrodibenzo[b,e][1,4]azasiline (DDA) with the electron acceptor triphenylphosphine oxide (PO) unit (mDDA-PO and o-mDDA-PO) and compared their characteristics with those of a reference material using 1,3-Bis(N-carbazolyl)benzene (mCP) as an electron donor (mCP-PO) for blue organic light-emitting diodes (OLEDs). Using density functional theory (DFT) and time-dependent DFT calculations, we obtained the electron distributions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) as well as the energies of the lowest singlet (S1) and lowest triplet (T1) excited states. The calculated energy difference (ΔEST) between the S1 and T1 states of mDDA-PO (0.16 eV) and o-mDDA-PO (0.07 eV) were smaller than that of mCP-PO (0.48 eV). The results showed that o-mDDA-PO is a suitable blue OLED emitter because it has sufficiently small ΔEST values, which is favorable in a reverse-intersystem process crossing from the T1 state to S1 states, as well as an emission wavelength of 446.7 nm.In thermoelectric modules, multiple n-type and p-type thermoelectric elements are electrically connected in series on a Cu electrode that is bonded to a ceramic substrate. Defects in the bond between the thermoelectric elements and the Cu electrode could impact the performance of the entire thermoelectric module. This study investigated the effect of plating layers on the bonding strength of p-type Bi-Te thermoelectric elements. Ni and Pd electroplating was applied to Bi-Te thermoelectric elements; further, electroless Ni-P immersion gold (ENIG) plating was applied to Cu electrodes bonded to ceramic substrates. Forming a Pd/Ni electroplating layer on the surface of thermoelectric elements and an ENIG plating layer on the surface of the Cu electrode improved the bonding strength by approximately 3.5 times. When the Pd/Ni and ENIG plating layers were formed on Bi-Te elements and Cu substrates, respectively, the solderability greatly increased; as the solderability increased, the thickness of the diffusion layer formed with the solder layer increased. The improved bonding strength of the Pd/Ni plated thermoelectric element bonded on the ENIG plated substrate is attributed to the enhanced solderability due to the rapid inter-diffusion of Pd and Au into the solder layer and the formation of a stable and non-defected solder reaction interface layer.An effective diffusion barrier layer was coated onto the surface of BiTe-based materials to avoid the formation of brittle intermetallic compounds (IMCs) by the diffusion of the constituents of Sn-based solder alloys into the BiTe-based alloys. In this study, the electrochemical deposition of multi-layers, i.e., electroless nickel/electroless palladium/immersion gold (ENEPIG) was explored to enhance the bonding strength of BiTe materials with Cu electrodes. The thermoelectric modules with the ENEPIG plating layer exhibited high bonding strengths of 8.96 MPa and 7.28 MPa for the n- and p-type, respectively that increased slightly to 9.26 MPa and 7.76 MPa, respectively after the thermoelectric modules were heated at 200 °C for 200 h. These bonding strengths were significantly higher than that of the thermoelectric modules without a plating layer.