Cu(In,Ga)(S,Se)2 (CIGS) thin-film solar cells have attracted considerable interest in the field of photovoltaic devices due to their high efficiency and great potential for diverse applications. While CdS has been the most favorable n-type semiconductor because of its excellent lattice-match and electronic band alignment with p-type CIGS, its narrow optical band gap (∼2.4 eV) has limited light absorption in underlying CIGS absorber films. Reducing the thickness of CdS films to increase the short-circuit current-density has been less effective due to the following decrease in the open-circuit voltage. To overcome this trade-off between the main parameters, we controlled the formation mechanism of CdS films in chemical bath deposition and established its direct correlation with the properties of p-n junctions. Interestingly, a heterogeneous CdS film formation was found to have a synergetic effect with its ammonia bath solution, effectively reducing charge carrier loss from the shunt paths and interface recombination of CIGS/CdS junctions. With these electrical benefits, the trade-off was successfully alleviated and our best device achieved a power conversion efficiency of 15.6%, which is one of the state-of-the-art CIGS thin-film solar cells prepared using solution-processing techniques.Composite solid electrolytes (CSEs) hold great promise toward safe lithium metal batteries with high energy density, due to integration of the merits of polymer matrixes and fillers. Rational design of filler nanostructures has attracted increasing attention for improving the ionic transport of CSEs in solid batteries. In this work, we fabricated open-structured Li0.33La0.557TiO3 (LLTO) nanotubes (NTs) as ion-conductive fillers in CSEs by a gradient electrospinning method for the first time. Different from nanoparticles (NPs) and nanowires (NWs), our nanotubes are composed of connected small NPs, which offer three-dimensional (3D) Li+-accessible pathways, large polymer/filler interfacial ionic conduction regions, and enhanced wettability against the polymer matrix. As a result, the solid electrolytes based on LLTO NTs and polyacrylonitrile (PAN) can display a high ionic conductivity of up to 3.6 × 10-4 S cm-1 and a wide electrochemical window of 5 V at room temperature (RT). Furthermore, Li-Li symmetric cells using the LLTO NTs/PAN CSE can work stably over 1000 h with a polarization of 20 mV. LiFePO4-Li full cells exhibit a high capacity of 142.5 mAh g-1 with a capacity retention of 90% at 0.5 C after 100 cycles. All of these results demonstrate that the design of open-structured nanotubes as fillers is a promising strategy for high-performance solid electrolytes.How to develop efficient red-emitting organometallics of earth-abundant copper(I) is a formidable challenge in the field of organic light-emitting diodes (OLEDs) because Cu(I) complexes have weak spin-orbit coupling and a serious excited-state reorganization effect. Here, a red Cu(I) complex, MAC*-Cu-DPAC, was developed using a rigid 9,9-diphenyl-9,10-dihydroacridine donor ligand in a carbene-metal-amide motif. The Cu(I) complex achieved satisfactory red emission, a high photoluminescence quantum yield of up to 70%, and a sub-microsecond lifetime. Thanks to a linear geometry and the acceptor and donor ligands in a coplanar conformation, the complex exhibited a high horizontal dipole ratio of 77% in the host matrix, first demonstrated for coinage metal(I) complexes. The resulting OLEDs delivered high external quantum efficiencies of 21.1% at a maximum and 20.1% at 1000 nits, together with a red emission peak at ∼630 nm. These values represent the state-of-the-art performance for red-emitting OLEDs based on coinage metal complexes.The arrival of the era of artificial intelligence is constantly advancing the development of flexible electronic materials. However, low mechanical properties, nonflexible signal transmission, and insensitive signal output have restricted their development as sensors. In this study, a superstretching MXene composite conductive hydrogel was developed with a tensile strain of more than 1800%. The hydrogel was used as a flexible wearable sensor to detect human motion signals in real time. High sensitivity was achieved using the sensor to discern multidirectional human motions, such as bending of human joints, throat vocalization, swallowing, and pulse beat. In addition, rapid resilience was observed for the MXene composite hydrogel after unloading reverse compressive stress, which can quickly cause a specific current response in the micropressure area without leaving any traces. This thixotropic sensor achieves a rapid response to bidirectional stress and has huge application prospects in the field of human body motion detection and national defense information encryption.The drug-impermeable bacterial membrane in Gram-negative pathogens limits antibiotic access to intracellular drug targets. To expand our rapidly waning antibiotic arsenal, one approach is to improve the intracellular delivery of drugs with historically poor accumulation in Gram-negative bacteria. To do so, we engineered macromolecular potentiators to permeabilize the Gram-negative membrane to facilitate drug influx. Potentiators, known as WD40, were synthesized by grafting multiple copies of a cationic α-helical antimicrobial peptide, WLBU2, onto a dextran polymer scaffold. https://www.selleckchem.com/products/sc-43.html WD40 enabled drug uptake in the model pathogen P. aeruginosa, a capability that was not observed with unmodified WLBU2 peptide. WD40 was able to reduce minimum inhibitory concentrations of a drug panel by up to 3 orders of magnitude. Hydrophobic and highly three-dimensional antibiotics exhibited the greatest potentiation. Antibiotic activity was potentiated in several clinical strains and resulted in sensitization of drug-resistant strains to rifampin, a drug not previously used for Gram-negative infections.Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation-a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation.