https://www.selleckchem.com/products/dibutyryl-camp-bucladesine.html At the end of the six-month submission period, 16 articles (15 research article and one review) were accepted after the peer-review processes and published online.Novel imidazole derivatives were designed, prepared, and evaluated in vitro for antitumor activity. The majority of the tested derivatives showed improved antiproliferative activity compared to the positive control drugs 5-FU and MTX. Among them, compound 4f exhibited outstanding antiproliferative activity against three cancer cell lines and was considerably more potent than both 5-FU and MTX. In particular, the selectivity index indicated that the tolerance of normal L-02 cells to 4f was 23-46-fold higher than that of tumor cells. This selectivity was significantly higher than that exhibited by the positive control drugs. Furthermore, compound 4f induced cell apoptosis by increasing the protein expression levels of Bax and decreasing those of Bcl-2 in a time-dependent manner. Therefore, 4f could be a potential candidate for the development of a novel antitumor agent.The bioactive piperine, a compound found in some pepper species, has been widely studied because of its therapeutic properties that include the inhibition of an important inflammation pathway triggered by interleukin-1 beta (IL-1β). However, investigation into the molecular interactions between IL-1β and piperine is not reported in the literature. Here, we present for the first time the characterisation of the complex formed by IL-1β and piperine through experimental and computational molecular biophysical analyses. Fluorescence spectroscopy unveiled the presence of one binding site for piperine with an affinity constant of 14.3 × 104 M-1 at 298 K. The thermodynamic analysis indicated that the interaction with IL-1β was spontaneous (∆G = -25 kJ/mol) and, when split into enthalpic and entropic contributions, the latter was more significant. Circular dichroism spectroscopy show