virginica, and potentially have a role in their adaptive and evolutionary success. Altogether, these results suggest that copy number variation plays an important role in the genomic variation of C. virginica. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.Molluscs are among the most ancient, diverse, and important of all animal taxa. Even so, no individual mollusc species has emerged as a broadly applied model system in biology. We here make the case that both perceptual and methodological barriers have played a role in the relative neglect of molluscs as research organisms. We then summarize the current application and potential of molluscs and their genomes to address important questions in animal biology, and the state of the field when it comes to the availability of resources such as genome assemblies, cell lines, and other key elements necessary to mobilising the development of molluscan model systems. We conclude by contending that a cohesive research community that works together to elevate multiple molluscan systems to 'model' status will create new opportunities in addressing basic and applied biological problems, including general features of animal evolution. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.Traditional molecular methods and omics-techniques across molluscan taxonomy increasingly inform biology of Mollusca. Recovery of DNA and RNA for such studies is challenged by common biological properties of the highly diverse molluscs. Molluscan biomineralization, adhesive structures and mucus involve polyphenolic proteins and mucopolysaccharides that hinder DNA extraction or copurify to inhibit enzyme-catalysed molecular procedures. DNA extraction methods that employ the detergent hexadecyltrimethylammoniumbromide (CTAB) to remove these contaminants importantly facilitate molecular-level study of molluscs. Molluscan pigments may stain DNA samples and interfere with spectrophotometry, necessitating gel electrophoresis or fluorometry for accurate quantification. RNA can reliably be extracted but the 'hidden break' in 28S rRNA of molluscs (like most protostomes) causes 18S and 28S rRNA fragments to co-migrate electrophoretically. This challenges the standard quality control based on the ratio of 18S and 28S rRNA, developed for deuterostome animals. High-AT content in molluscan rRNA prevents the effective purification of polyadenylated mRNA. Awareness of these matters aids the continuous expansion of molecular malacology, enabling work also with museum specimens and next-generation sequencing, with the latter imposing unprecedented demands on DNA quality. Alternative methods to extract nucleic acids from molluscs are available from literature and, importantly, from communications with others who study the molecular biology of molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.The extraordinary diversity in molluscan body plans, and the genomic mechanisms that enable it, remains one of the great questions of evolution. The eight distinct living taxonomic classes of molluscs are each unambiguously monophyletic; however, significant controversy remains about the phylogenetic relationships among those eight branches. Molluscs are the second-largest animal phylum, with over 100 000 living species with broad biological, economic and medical interest. To date, only around 53 genome assemblies have been accessioned to NCBI GenBank covering only four of the eight living molluscan classes. Furthermore, the molluscan taxa where partial or whole-genome assemblies are available are often aberrantly fast evolving or recently derived lineages. Characteristic adaptations provide interesting targets for whole-genome projects, in animals like the scaly-foot snail or octopus, but without basal-branching lineages for comparison, the context of recently derived features cannot be assessed. The currently available genomes also create a non-optimal set of taxa for resolving deeper phylogenetic branches they are a small sample representing a large group, and those that are available come primarily from a rarefied pool. Thoughtful selection of taxa for future projects should focus on the blank areas of the molluscan tree, which are ripe with opportunities to delve into peculiarities of genome evolution, and reveal the biology and evolutionary history of molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.Choosing the optimum assembly approach is essential to achieving a high-quality genome assembly suitable for comparative and evolutionary genomic investigations. Significant recent progress in long-read sequencing technologies such as PacBio and Oxford Nanopore Technologies (ONT) has also brought about a large variety of assemblers. Although these have been extensively tested on model species such as Homo sapiens and Drosophila melanogaster, such benchmarking has not been done in Mollusca, which lacks widely adopted model species. Molluscan genomes are notoriously rich in repeats and are often highly heterozygous, making their assembly challenging. Here, we benchmarked 10 assemblers based on ONT raw reads from two published molluscan genomes of differing properties, the gastropod Chrysomallon squamiferum (356.6 Mb, 1.59% heterozygosity) and the bivalve Mytilus coruscus (1593 Mb, 1.94% heterozygosity). By optimizing the assembly pipeline, we greatly improved both genomes from previously published versions. Our results suggested that 40-50X of ONT reads are sufficient for high-quality genomes, with Flye being the recommended assembler for compact and less heterozygous genomes exemplified by C. https://www.selleckchem.com/products/bos172722.html squamiferum, while NextDenovo excelled for more repetitive and heterozygous molluscan genomes exemplified by M. coruscus. A phylogenomic analysis using the two updated genomes with 32 other published high-quality lophotrochozoan genomes resulted in maximum support across all nodes, and we show that improved genome quality also leads to more complete matrices for phylogenomic inferences. Our benchmarking will ensure efficiency in future assemblies for molluscs and perhaps also for other marine phyla with few genomes available. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.