https://www.selleckchem.com/products/rrx-001.html The main goal of disease mapping is to estimate disease risk and identify high-risk areas. Such analyses are hampered by the limited geographical resolution of the available data. Typically the available data are counts per spatial unit and the common approach is the Besag-York-Mollié (BYM) model. When precise geocodes are available, it is more natural to use Log-Gaussian Cox processes (LGCPs). In a simulation study mimicking childhood leukaemia incidence using actual residential locations of all children in the canton of Zürich, Switzerland, we compare the ability of these models to recover risk surfaces and identify high-risk areas. We then apply both approaches to actual data on childhood leukaemia incidence in the canton of Zürich during 1985-2015. We found that LGCPs outperform BYM models in almost all scenarios considered. Our findings suggest that there are important gains to be made from the use of LGCPs in spatial epidemiology. Imputation of missing spatial attributes in health records may facilitate linkages to geo-referenced environmental exposures, but few studies have assessed geo-imputation impacts on epidemiologic inference. We imputed patient Census tracts in a case-crossover analysis of fine particulate matter (PM2.5) and respiratory hospitalizations in New York State (2000-2005). We observed non-significantly higher PM2.5 exposures, high accuracy of binary exposure assignment (89 to 99%), and marginally different hazard ratios (HRs) (-0.2 to 0.7%). HR differences were greater in urban versus rural areas. Given its efficiency and nominal influence on accuracy of exposure classification and measures of association, geo-imputation is a candidate method to address missing spatial attributes for health studies. Coccidioidomycosis is an understudied infectious disease acquired by inhaling fungal spores of Coccidioides species. While historically connected to the southwestern United States, the endemic reg