https://www.selleckchem.com/peptide/pki-14-22-amide-myristoylated.html No false-negative result was found in the Stx2-UPT-LFA even with a high-test concentration up to 1000 ng mL-1. Meanwhile, both targets detection sensitivities for dual-target Stx1/2-UPT-LFA were 5 ng mL-1, and accurate quantitation ranges were 5-1000 ng mL-1 and 5-800 ng mL-1 for standard Stx1 and Stx2 solutions without cross-interference between two targets. Both techniques showed good linearities, with a linear fitting coefficient of determination(r) of 0.9058-0.9918. Therefore, the UPT-LFA could realize simultaneous detection for multiple targets on a single strip and thus to quickly determine the type of infectious Stxs. In addition, the single-target Stx1-UPT-LFA and Stx2-UPT-LFA showed excellent specificity to six toxins, even at high concentrations of 1000 ng mL-1. In conclusion, the developed Stx-UPT-LFA allows the rapid, quantitative, reliable and simultaneous detection of Stx1 and Stx2 within 20 min, providing an alternative method for clinical diagnosis of STEC infection.Circulating tumor cells (CTCs) are widely known as useful biomarkers in the liquid biopsies of cancer patients. Although single-cell genetic analysis of CTCs is a promising diagnostic tool that can provide detailed clinical information for precision medicine, the capacity of single-CTC isolation for genetic analysis requires improvement. To overcome this problem, we previously developed a multiple single-cell encapsulation system for CTCs using hydrogel-encapsulation, which allowed for the high-throughput isolation of single CTCs. However, isolation of a single cell from adjacent cells remained difficult and often resulted in contamination by neighboring cells due to the limited resolution of the generated hydrogel. We developed a novel multiple single-cell encapsulation system equipped with a high magnification lens for high throughput and a more accurate single-cell encapsulation. The multiple single-cell encapsulati