https://www.selleckchem.com/products/Staurosporine.html Interlaced metallic meshes form a class of three-dimensional metamaterials that exhibit nondispersive, broadband modes at low frequencies, without the low frequency cutoff typical of generic wire grid geometries. However, the experimental observation of these modes has remained an open challenge, both due to the difficulties in fabricating such complex structures and also because the broadband mode is longitudinal and does not couple to free-space radiation (dark mode). Here we report the first experimental observation of the low frequency modes in a block of interlaced meshes fabricated through 3D printing. We demonstrate how the addition of monopole antennas to opposing faces of one of the meshes enables coupling of a plane wave to the low frequency "dark mode" and use this to obtain the dispersion of the mode. In addition, we utilize orthogonal antennas on opposite faces to achieve polarization rotation as well as phase shifting of radiation passing through the structure. Our work paves the way toward further experimental study into interlaced meshes and other complex 3D metamaterials.Nonlinear metasurfaces constitute a key asset in meta-optics, given their ability to scale down nonlinear optics to sub-micrometer thicknesses. To date, nonlinear metasurfaces have been mainly realized using narrow band gap semiconductors, with operation limited to the near-infrared range. Nonlinear meta-optics in the visible range can be realized using transparent materials with high refractive index, such as lithium niobate (LiNbO3). Yet, efficient operation in this strategic spectral window has been so far prevented by the nanofabrication challenges associated with LiNbO3, which considerably limit the aspect ratio and minimum size of the nanostructures (i.e., meta-atoms). Here we demonstrate the first monolithic nonlinear periodic metasurface based on LiNbO3 and operating in the visible range. Realized through ion beam milli