Singlet fission (SF) can potentially boost the efficiency of solar energy conversion by converting a singlet exciton (S1) into two free triplets (T1 + T1) through an intermediate state of a correlated triplet pair (TT). Although efficient TT generation has been recently realized in many intramolecular SF materials, their potential applications have been hindered by the poor efficiency of TT dissociation. Here we demonstrate that this can be overcome by employing a spatially separated 1(T…T) state with weak intertriplet coupling in tetracene oligomers with three or more chromophores. By using transient magneto-optical spectroscopic methods, we show that free-triplet generation can be markedly enhanced through the SF pathway that involves the spatially separated 1(T…T) state rather than the pathway mediated by the spatially adjacent TT state, leading to a marked improvement in free-triplet generation with an efficiency increase from 21% for the dimer to 85% (124%) for the trimer (tetramer).The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.Urinary incontinence is a common and predictable consequence among men with localized prostate cancer who have undergone radical prostatectomy. Despite advances in the surgical technique, urinary continence recovery time remains variable. A range of surgical and patient-related risk factors contributing to urinary incontinence after radical prostatectomy have been described, including age, BMI, membranous urethral length and urethral sphincter insufficiency. Physical activity interventions incorporating aerobic exercise, resistance training and pelvic floor muscle training programmes can positively influence the return to continence in men after radical prostatectomy. Traditional approaches to improving urinary continence after radical prostatectomy have typically focused on interventions delivered during the postoperative period (rehabilitation). However, the limited efficacy of these postoperative approaches has led to a shift from the traditional reactive model of care to more comprehensive interventions incorporating exercise-based programmes that begin in the preoperative period (prehabilitation) and continue after surgery. Comprehensive prehabilitation interventions include appropriately prescribed aerobic exercise, resistance training and specific pelvic floor muscle instruction and exercise training programmes. Transperineal ultrasonography is a non-invasive and validated method for the visualization of the action of the pelvic floor musculature, providing real-time visual biofeedback to the patient during specific pelvic floor muscle instruction and training. Importantly, the waiting time before surgery can be used for the delivery of comprehensive prehabilitation exercise-based interventions to increase patient preparedness in the lead-up to surgery and optimize continence and health-related quality-of-life outcomes following radical prostatectomy.Cell therapy is one of the fastest growing areas in the pharmaceutical industry, with considerable therapeutic potential. However, substantial challenges regarding the utility of these therapies will need to be addressed before they can become mainstream medicines with applicability similar to that of small molecules or monoclonal antibodies. Engineered T cells have achieved success in the treatment of blood cancers, with four chimeric antigen receptor (CAR)-T cell therapies now approved for the treatment of B cell malignancies based on their unprecedented efficacy in clinical trials. However, similar results have not yet been achieved in the treatment of the much larger patient population with solid tumours. For cell therapies to become mainstream medicines, they may need to offer transformational clinical effects for patients and be applicable in disease settings that remain unaddressed by simpler approaches. This Perspective provides an industry perspective on the progress achieved by engineered T cell therapies to date and the opportunities and current barriers for accessing broader patient populations, and discusses the solutions and new development strategies required to fully industrialize the therapeutic potential of engineered T cells as medicines.Almost 20 years have passed since the first reference genome assemblies were published for Plasmodium falciparum, the deadliest malaria parasite, and Anopheles gambiae, the most important mosquito vector of malaria in sub-Saharan Africa. Reference genomes now exist for all human malaria parasites and nearly half of the ~40 important vectors around the world. As a foundation for genetic diversity studies, these reference genomes have helped advance our understanding of basic disease biology and drug and insecticide resistance, and have informed vaccine development efforts. Population genomic data are increasingly being used to guide our understanding of malaria epidemiology, for example by assessing connectivity between populations and the efficacy of parasite and vector interventions. https://www.selleckchem.com/products/lanraplenib.html The potential value of these applications to malaria control strategies, together with the increasing diversity of genomic data types and contexts in which data are being generated, raise both opportunities and challenges in the field. This Review discusses advances in malaria genomics and explores how population genomic data could be harnessed to further support global disease control efforts.