https://www.selleckchem.com/products/ml390.html 89; 95%CI 2.00-4.16). Silent vascular lesions associated with 0.15 SDs (95%CI 0.01-0.88) smaller brain volume, 0.02 SDs (95%CI 0.01-0.03) steeper brain atrophy slope, and 0.48 SDs (95%CI 0.32-0.64) larger WMH volume at baseline, in addition to increased risk for lacunes (RR 2.08; 95%CI 1.48-2.94). Individuals with imaging negative ischemia had increased risk for cortical infarcts (RR=2.88; 95%CI 2.17-3.82). Patients with symptomatic cerebrovascular disease, silent vascular lesions, or imaging negative ischemia have different course of brain volume loss and cerebrovascular lesions development. These findings may have implications for future stroke risk and dementia and need further investigation. Patients with symptomatic cerebrovascular disease, silent vascular lesions, or imaging negative ischemia have different course of brain volume loss and cerebrovascular lesions development. These findings may have implications for future stroke risk and dementia and need further investigation. Patients with SLE have increased risk of myocardial infarction (MI). Few studies have investigated the characteristics of SLE-related MIs. We compared characteristics of and risk factors for MI between SLE patients with MI (MI-SLE), MI patients without SLE (MI-non-SLE) and SLE patients without MI (non-MI-SLE) to understand underlying mechanisms. We identified patients with a first-time MI in the Karolinska SLE cohort. These patients were individually matched for age and gender with MI-non-SLE and non-MI-SLE controls in a ratio of 111. Retrospective medical file review was performed. Paired statistics were used as appropriate. Thirty-four MI-SLE patients (88% females) with a median age of 61 years were included. These patients had increased number of coronary arteries involved (p=0.04), and ≥50% coronary atherosclerosis/occlusion was numerically more common compared with MI-non-SLE controls (88% vs 66%; p=0.07). The left anterior descending