https://www.selleckchem.com/products/selonsertib-gs-4997.html With the increasing demand to develop a renewable and sustainable biolipid feedstock, several species of non-conventional oleaginous yeasts are being explored. Apart from the platform oleaginous yeast Yarrowia lipolytica, the understanding of metabolic pathway and, therefore, exploiting the engineering prospects of most of the oleaginous species are still in infancy. However, in the past few years, enormous efforts have been invested in Rhodotorula, Rhodosporidium, Lipomyces, Trichosporon, and Candida genera of yeasts among others, with the rapid advancement of engineering strategies, significant improvement in genetic tools and techniques, generation of extensive bioinformatics and omics data. In this review, we have collated these recent progresses to make a detailed and insightful summary of the major developments in metabolic engineering of the prominent oleaginous yeast species. Such a comprehensive overview would be a useful resource for future strain improvement and metabolic engineering studies for enhanced production of lipid and lipid-derived chemicals in oleaginous yeasts.Of the 25 million tons of plastic waste produced every year in Europe, 40% of these are not reused or recycled, thus contributing to environmental pollution, one of the major challenges of the 21st century. Most of these plastics are made of petrochemical-derived polymers which are very difficult to degrade and as a result, a lot of research efforts have been made on more environmentally friendly alternatives. Bio-based monomers, derived from renewable raw materials, constitute a possible solution for the replacement of oil-derived monomers, with furan derivatives that emerged as platform molecules having a great potential for the synthesis of biobased polyesters, polyamides and their copolymers. This review article summarizes the latest developments in biotechnological production of furan compounds that can be used in polymer