https://www.selleckchem.com/products/GDC-0449.html The diets containing different proportions of black rice and a low proportion of sorghum grain reduced the expression level of Niemann-Pick type C 1 like 1 (NPC1L1) mRNA and increased the mRNA level of the ATP-binding cassette transporters, ABCG5/ABCG8, in the small intestine, thereby reducing cholesterol absorption. A diet containing a low proportion of black rice promoted the expression of ABCA1 mRNA and increased the expression of high-density lipoprotein (HDL) mRNA, thereby promoting reverse cholesterol transport. Black rice diets significantly increased the relative abundances of microbiota in the small intestine and maintained biodiversity, while sorghum grain had no positive effect on the abundance of microbiota.Many studies have demonstrated that curcumin can downregulate mRNA levels of sterol regulatory element-binding proteins (SREBP-2); however, our study did not find similar results. This study was designed to demonstrate that curcumin inhibits the proteolytic process of SREBP-2 by first inhibiting the expression of membrane-bound transcription factor site-1 protease (S1P) rather than directly inhibiting SREBP-2 expression. After curcumin treatment, Caco-2 cells were collected to observe the dose- and time-dependent dynamics of precursor and mature SREBP-2, transcription factor-specific protein 1 (SP-1), and SREBP cleavage-activating protein (SCAP). After curcumin treatment, SREBP-2 distribution was detected in the cells and S1P protein expression was examined. Curcumin could downregulate mRNA levels of SREBP2, SP-1 and SCAP, but it did not simultaneously downregulate the expression of precursor SREBP-2 (pSREBP-2) and SCAP. Curcumin can inhibit the proteolytic process of SREBP-2, reduce the production of mature SREBP-2 (mSREBP-2), and change the cellular distribution of SREBP-2. The inhibitory effect of curcumin on SP-1 protein expression is short-acting. Curcumin could downregulate the mRNA and protein