Experimentally, the McORD method may be incorporated into existing set-ups with minimal additional equipment.Multicore photonic crystal fiber (MC-PCF) can scale the output power with the number of cores by spatial beam combining if the in-phase mode is selected. We demonstrated simultaneous realization of phase-locked and mode-locked laser using Yb-doped 7-core MC-PCF by a semiconductor saturable absorber placed in the near-field inside a resonator. High energy 333 nJ pulses were obtained directly from a mode-locked fiber laser oscillator at a 42.4 MHz repetition rate with an average power of 14.1 W at 24 W excitation. We observed the direct output pulse width of 52 ps assuming a sech2 profile. https://www.selleckchem.com/products/mivebresib-abbv-075.html However, it might be noise-like pulses because of no variation when we performed pulse compression. Single-pulse operation was achieved by increasing the bandwidth of the intracavity filter. In this case, 137 nJ, 42.4 MHz pulses were generated with a 5.8 W average power and the compressed output pulse width was 8.6 ps.Rigorous statistical testing of deformation using a terrestrial laser scanner (TLS) can avoid events such as structure collapses. Such a procedure necessitates an accurate description of the TLS measurements' noise, which should include the correlations between angles. Unfortunately, these correlations are often unaccounted for due to a lack of knowledge. This contribution addresses this challenge. We combine (i) a least-square approximation to extract the geometry of the TLS point cloud with the aim to analyze the residuals of the fitting and (ii) a specific filtering coupled with a maximum likelihood estimation to quantify the amount of flicker noise versus white noise. This allows us to set up fully populated variance covariance matrices of the TLS noise as a result.We propose a genetic algorithm-assisted inverse design approach to achieve 'on- demand' light transport in periodic and non-periodic planar structures containing dielectric and gain-loss layers. The optimization algorithm efficiently produces non-Hermitian potentials from any arbitrarily given real (or imaginary) permittivity distribution for the desired frequency selective and broadband asymmetric reflectivity. Indeed, we show that the asymmetric response is directly related to the area occupied by the obtained permittivity distribution in the complex plane. In particular, unidirectional light reflection can be designed in such a way that it switches from left to right (or vice versa) depending on the operating frequency. Moreover, such controllable unidirectional reflectivity is realized using a stack of dielectric layers while keeping the refractive index and gain-loss within realistic values. We believe this proposal will benefit the integrated photonics with frequency selective one-way communication.Optical coherence tomography (OCT) was used for imaging three-dimensional fingerprint to overcome the effects of different skin states and fake fingerprint. However, the OCT-based fingerprint features depend on the depth of fingertip skin which is still challenging for biometric recognition and encryption. In this work, we presented a new approach of maximum intensity projection (MIP) image of the epidermal-dermal junction (DEJ) to extract the internal fingerprint that is independent of the depth of fingertip skin. To begin with, the surface and DEJ were segmented based on the deep learning algorithm. Then the internal fingerprint was extracted by the MIP image of DEJ which has a more accurate structural similarity by quantitative analysis. The experimental results showed that internal fingerprint acquired by MIP of DEJ can be applied for scar-simulation fingertip and encryption since it is not sensitive to the states of surface skin and independent of the depth.We designed and characterized a microstrip pattern of planar patch antennas compatible with a cuprate high-Tc superconducting terahertz emitter. Antenna parameters were optimized using an electromagnetic simulator. We observed repeatable sub-terahertz emissions from each mesa fabricated on identical Bi2Sr2CaCu2O8+δ base crystals in a continuous frequency range of 0.35-0.85 THz. Although there was no significant output power enhancement, a plateau behavior at a fixed frequency was observed below 40 K, indicating moderate impedance matching attributable to the ambient microstrip pattern. A remarkably anisotropic polarization at an axial ratio of up to 16.9 indicates a mode-locking effect. Our results enable constructing compactly assembled, monolithic, and broadly tunable superconducting terahertz sources.In recent years, optical forces and torques have been investigated in sub-wavelength evanescent fields yielding a rich phenomenology of fundamental and applied interest. Here we demonstrate analytically that guided modes carrying transverse spin density induce optical torques depending on the character, either electric or magnetic, of the dipolar particles. The existence of a nonzero longitudinal extraordinary linear spin momentum suitable to manipulate optical forces and torques modifies optical forces either enhancing or inhibiting radiation pressure. Hybrid modes supported by cylindrical waveguides also exhibit intrinsic helicity that leads to a rich distribution of longitudinal optical torques. Finally, we show that chiral dipolar particles also undergo lateral forces induced by transverse spin density, amenable to chiral particle sorting. These properties are revealed in configurations on achiral and chiral dipolar particles within confined geometries throughout the electromagnetic spectra.Phase-sensitive optical coherence tomography (OCT) is used to measure motion in a range of techniques, such as Doppler OCT and optical coherence elastography (OCE). In phase-sensitive OCT, motion is typically estimated using a model of the OCT signal derived from a single reflector. However, this approach is not representative of turbid samples, such as tissue, which exhibit speckle. In this study, for the first time, we demonstrate, through theory and experiment that speckle significantly lowers the accuracy of phase-sensitive OCT in a manner not accounted for by the OCT signal-to-noise ratio (SNR). We describe how the inaccuracy in speckle reduces phase difference sensitivity and introduce a new metric, speckle brightness, to quantify the amount of constructive interference at a given location in an OCT image. Experimental measurements show an almost three-fold degradation in sensitivity between regions of high and low speckle brightness at a constant OCT SNR. Finally, we apply these new results in compression OCE to demonstrate a ten-fold improvement in strain sensitivity, and a five-fold improvement in contrast-to-noise by incorporating independent speckle realizations.