https://www.selleckchem.com/products/sumatriptan.html While it is important to control nicotine levels in e-cigarette products, attention should also be given to the nicotine forms present in these products in order to address nicotine addiction in the population. The protonated form of nicotine is being correlated with the smooth sensory effects and high nicotine absorption as compared to free base nicotine. With the introduction of nicotine salts, which yield mostly the protonated form, the youth popularity of e-cigarettes has spiked exponentially. While it is important to control nicotine levels in e-cigarette products, attention should also be given to the nicotine forms present in these products in order to address nicotine addiction in the population. Cell-based delivery systems offer considerable promise as novel and innovative therapeutics to target the respiratory system. These systems consist of cells and/or their extracellular vesicles that deliver their contents, such as anti-microbial peptides, micro RNAs, and even mitochondria to the lung, exerting direct therapeutic effects. The purpose of this article is to critically review the status of cell-based therapies in the delivery of therapeutics to the lung, evaluate current progress, and elucidate key challenges to the further development of these novel approaches. An overview as to how these cells and/or their products may be modified to enhance efficacy is given. More complex delivery cell-based systems, including cells or vesicles that are genetically modified to (over)express specific therapeutic products, such as proteins and therapeutic nucleic acids are also discussed. Focus is given to the use of the aerosol route to deliver these products directly into the lung. The use of biological carriers to deliver chemical or biological agents demonstrates great potential in modern medicine. The next generation of drug delivery systems may comprise 'cell-inspired' drug carriers that are entirely synthetic,