https://www.selleckchem.com/products/XL184.html Food-derived plant microRNAs are suggested to control human genes by "cross-kingdom" regulation. We examined microRNAs in sprouts from Brassica rapa sylvestris, known as broccoletti, which are widely used as sulforaphane supplements, and assessed their influence on pancreatic cancer. RNA was isolated from 4-day-old sprouts, followed by deep sequencing and bioinformatic analysis. We identified 2 new and 745 known plant microRNA sequences in the miRbase database and predicted 15,494 human target genes and 76,747 putative 3'-UTR binding sites in these target genes. The most promising candidates were the already known microRNA sequence bra-miR156g-5p and the new sequence Myseq-330, both with predicted human target genes related to apoptosis. The overexpression of the respective oligonucleotides by lipofection did not alter the viability, apoptosis, clonogenicity, migration or associated protein expression patterns in pancreatic cancer cells. These data demonstrate that broccoletti sprouts contain microRNA sequences with putative binding sites in human genes, but the sequences evaluated here did not affect cancer growth. Our database of broccoletti-derived microRNA sequences provides a valuable tool for future analysis.Membrane-bound pyrophosphatases (mPPases) regulate energy homeostasis in pathogenic protozoan parasites and lack human homologues, which makes them promising targets in e.g. malaria. Yet only few nonphosphorus inhibitors have been reported so far. Here, we explore an isoxazole fragment hit, leading to the discovery of small mPPase inhibitors with 6-10 μM IC50 values in the Thermotoga maritima test system. Promisingly, the compounds retained activity against Plasmodium falciparum mPPase in membranes and inhibited parasite growth. Copyright © 2020 American Chemical Society.Despite recent advances in the field of C(sp2)-C(sp3) cross-couplings and the accompanying increase in publications, it can be hard to deter