The successful construction of NPG scaffolds not only takes full advantage of the self-assembled natural products, but also takes an important step in the development of new applications for natural products.Due to numerous obstacles such as complex matrices, real-time monitoring of complex reaction systems (e.g., medicinal herb stewing system) has always been a challenge though great values for safe and rational use of drugs. Herein, facilitated by the potential ability on the tolerance of complex matrices of extractive electrospray ionization mass spectrometry, a device was established to realize continuous sampling and real-time quantitative analysis of herb stewing system for the first time. A complete analytical strategy, including data acquisition, data mining, and data evaluation was proposed and implemented with overcoming the usual difficulties in real-time mass spectrometry quantification. The complex Fuzi (the lateral root of Aconitum)-meat stewing systems were real-timely monitored in 150 min by qualitative and quantitative analysis of the nine key alkaloids accurately. The results showed that the strategy worked perfectly and the toxicity of the systems were evaluated and predicated accordingly. Stewing with trotters effectively accelerated the detoxification of Fuzi soup and reduced the overall toxicity to 68%, which was recommended to be used practically for treating rheumatic arthritis and enhancing immunity. The established strategy was versatile, simple, and accurate, which would have a wide application prospect in real-time analysis and evaluation of various complex reaction systems.Seven indole alkaloid glycosides containing a 1'-(4″-hydroxy-3″,5″-dimethoxyphenyl)ethyl unit (1-7) were isolated from an aqueous extract of Isatis indigotica leaves (da qing ye). Their structures were determined by spectroscopic data analysis combined with enzymatic hydrolysis as well as comparison of their experimental CD (circular dichroism) and calculated ECD (electrostatic circular dichroism) spectra. Based on analysis of [ α ] D 20 and/or Cotton effect (CE) data of 1-7, two simple roles to assign location and/or configuration of β-glycopyranosyloxy and 1'-(phenyl)ethyl units in the indole alkaloid glycosides are proposed. Stereoselectivity in plausible biosynthetic pathways of 1-7 is discussed. Compounds 3 and 4 and their mixture in a 32 ratio showed activity against KCNQ2 in CHO cells. The mixture of 5 and 6 (32) exhibited antiviral activity against influenza virus H1N1 PR8 with IC50 64.7 μmol/L (ribavirin, IC50 54.3 μmol/L), however, the individual 5 or 6 was inactive. Preliminary structure-activity relationships were observed.In this report, a series of novel piperidine-substituted thiophene[3,2-d]pyrimidine derivatives were designed to explore the hydrophobic channel of the non-nucleoside reverse transcriptase inhibitors binding pocket (NNIBP) by incorporating an aromatic moiety to the left wing of the lead K-5a2. The newly synthesized compounds were evaluated for anti-HIV potency in MT-4 cells and inhibitory activity to HIV-1 reverse transcriptase (RT). Most of the synthesized compounds exhibited broad-spectrum activity toward wild-type and a wide range of HIV-1 strains carrying single non-nucleoside reverse transcriptase inhibitors (NNRTI)-resistant mutations. Especially, compound 26 exhibited the most potent activity against wild-type and a panel of single mutations (L100I, K103N, Y181C, Y188L and E138K) with an EC50 ranging from 6.02 to 23.9 nmol/L, which were comparable to those of etravirine (ETR). Moreover, the RT inhibition activity, preliminary structure-activity relationship and molecular docking were also investigated. Furthermore, 26 exhibited favorable pharmacokinetics (PK) profiles and with a bioavailability of 33.8%. Taken together, the results could provide valuable insights for further optimization and compound 26 holds great promise as a potential drug candidate for the treatment of HIV-1 infection.Previously, we proposed a new perspective of triptolide (TP)-associated hepatotoxicity liver hypersensitivity upon lipopolysaccharide (LPS) stimulation. However, the mechanisms for TP/LPS-induced hepatotoxicity remained elusive. The present study aimed to clarify the role of LPS in TP/LPS-induced hepatotoxicity and the mechanism by which TP induces liver hypersensitivity upon LPS stimulation. TNF-α inhibitor, etanercept, was injected intraperitoneally into mice to investigate whether induction of TNF-α by LPS participated in the liver injury induced by TP/LPS co-treatment. Mice and hepatocytes pretreated with TP were stimulated with recombinant TNF-α to assess the function of TNF-α in TP/LPS co-treatment. Additionally, time-dependent NF-κB activation and NF-κB-mediated pro-survival signals were measured in vivo and in vitro. Finally, overexpression of cellular FLICE-inhibitory protein (FLIP), the most potent NF-κB-mediated pro-survival protein, was measured in vivo and in vitro to assess its function in TP/LPS-induced hepatotoxicity. Etanercept counteracted the toxic reactions induced by TP/LPS. TP-treatment sensitized mice and hepatocytes to TNF-α, revealing the role of TNF-α in TP/LPS-induced hepatotoxicity. Mechanistic studies revealed that TP inhibited NF-κB dependent pro-survival signals, especially FLIP, induced by LPS/TNF-α. https://www.selleckchem.com/products/mavoglurant.html Moreover, overexpression of FLIP alleviated TP/LPS-induced hepatotoxicity in vivo and TP/TNF-α-induced apoptosis in vitro. Mice and hepatocytes treated with TP were sensitive to TNF-α, which was released from LPS-stimulated immune cells. These and other results show that the TP-induced inhibition of NF-κB-dependent transcriptional activity and FLIP production are responsible for liver hypersensitivity.Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the Slco1b2 gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the Slco1b2 knockout (KO) rat model via using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in Slco1b2 KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome.