https://www.selleckchem.com/products/zn-c3.html 01, vs. AβOs) in SH-SY5Y cells. These findings suggest the neuroprotective and therapeutic potential of Tocovid and Twendee-X for AD treatment. These findings suggest the neuroprotective and therapeutic potential of Tocovid and Twendee-X for AD treatment. Nocturnal systolic blood pressure (SBP) dipping is independently related to cardiovascular disease risk, but it is unclear if vascular insulin sensitivity associates with SBP dipping in patients with metabolic syndrome (MetS). Eighteen adults with MetS (ATP III criteria 3.3 ± 0.6; 53.2 ± 6.5 years; body mass index 35.8 ± 4.5 kg/m2) were categorized as "dippers" (≥10% change in SBP; n = 4 F/3 M) or "non-dippers" (<10%; n = 9 F/2 M). Twenty-four-hour ambulatory blood pressure was recorded to assess SBP dipping. A euglycemic-hyperinsulinemic clamp (40 mU/m2/min, 90 mg/dL) with ultrasound (flow mediated dilation) was performed to test vascular insulin sensitivity. A graded, incremental exercise test was conducted to estimate sympathetic activity. Heart rate (HR) recovery after exercise was then used to determine parasympathetic activity. Metabolic panels and body composition (DXA) were also tested. Dippers had greater drops in SBP (16.63 ± 5.2 vs. 1.83 ± 5.6%, p < 0.01) and experienced an attenuated rise in both SBPslope (4.7 ± 2.3 vs. 7.2 ± 2.5 mm Hg/min, p = 0.05) and HRslope to the incremental exercise test compared to non-dippers (6.5 ± 0.9 vs. 8.2 ± 1.7 bpm/min, p = 0.03). SBP dipping correlated with higher insulin-stimulated flow-mediated dilation (r = 0.52, p = 0.03), although the relationship was no longer significant after covarying for HRslope (r= 0.42,p = 0.09). Attenuated rises in blood pressure and HR to exercise appear to play a larger role than vascular insulin sensitivity in SBP dipping in adults with MetS. Attenuated rises in blood pressure and HR to exercise appear to play a larger role than vascular insulin sensitivity in SBP dipping in adults with MetS