Programmable materials have artificially designed physical shapes responding to external stimuli, as well as high design capability and high flexibility. Here, we propose a microfiber-shaped programmable material with an axial pattern of stimuli-responsive (SR) and nonresponsive hydrogels. The SR pre-gel solution was mixed to sodium alginate pre-gel solution for instantaneous gelation with ionic crosslinking and solidified on a nonresponsive hydrogel microfiber with a valve-controlled microfluidic system. A design of microfiber-shaped programmable material (patterned position of SR regions) could be flexibly altered by changing a coded sequence program. We confirmed that the three-dimensional (3D) coil-like structures were self-folded at the patterned SR regions responding to the thermal stimulus and that the chirality of the self-folded 3D coil-like structures depends on the condition of the stimulus to the microfiber. Finally, interaction with objects using the programmable microfiber as a soft actuator was demonstrated. Our microfiber-shaped programmable materials expand possibilities of fiber-based materials in biomimetics and soft robotics fields.α1-Adrenergic receptors (ARs) are catecholamine-activated G protein-coupled receptors (GPCRs) that are expressed in mouse and human myocardium and vasculature, and play essential roles in the regulation of cardiovascular physiology. Though α1-ARs are less abundant in the heart than β1-ARs, activation of cardiac α1-ARs results in important biologic processes such as hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Data from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) indicate that nonselectively blocking α1-ARs is associated with a twofold increase in adverse cardiac events, including heart failure and angina, suggesting that α1-AR activation might also be cardioprotective in humans. Mounting evidence implicates the α1A-AR subtype in these adaptive effects, including prevention and reversal of heart failure in animal models by α1A agonists. In this review, we summarize recent advances in our understanding of cardiac α1A-ARs.Atrial fibrillation (AF), the most common persistent arrhythmia, is terminated most effectively by electrical cardioversion. This therapy requires in-hospital sedation to relieve the pain caused by electric shocks. Recently, our research group showed how the heart itself could be enabled to detect and terminate arrhythmias, including AF, thereby revealing the discovery of fully biological, shock-free cardioversion. Because of its biological nature, neither electric shocks nor hardware/software is required for sinus rhythm (SR) restoration, which creates a new perspective for ambulatory AF termination. Increasing evidence suggests that patients may indeed benefit from such continuous real-time rhythm control.Plant omics is an emerging field of systems science and offers the prospects of evidence-based evaluation of traditional herbal medicines in human diseases. To this end, the powdered root of Yashtimadhu (Glycyrrhiza glabra L.), commonly known as liquorice, is frequently used in Indian Ayurvedic medicine with an eye to neuroprotection but its target proteins, mechanisms of action, and metabolites remain to be determined. Using a metabolomics and network pharmacology approach, we identified 98,097 spectra from positive and negative polarities that matched to ∼1600 known metabolites. These metabolites belong to terpenoids, alkaloids, and flavonoids, including both novel and previously reported active metabolites such as glycyrrhizin, glabridin, liquiritin, and other terpenoid saponins. Novel metabolites were also identified such as quercetin glucosides, coumarin derivatives, beta-carotene, and asiatic acid, which were previously not reported in relation to liquorice. Metabolite-protein interaction-based network pharmacology analyses enriched 107 human proteins, which included dopamine, serotonin, and acetylcholine neurotransmitter receptors among other regulatory proteins. https://www.selleckchem.com/products/GDC-0449.html Pathway analysis highlighted the regulation of signaling kinases, growth factor receptors, cell cycle, and inflammatory pathways. In vitro validation confirmed the regulation of cell cycle, MAPK1/3, PI3K/AKT pathways by liquorice. The present data-driven, metabolomics and network pharmacology study paves the way for further translational clinical research on neuropharmacology of liquorice and other traditional medicines.It is generally accepted that older adults display an impaired cardiovascular response to heat stress, and it has been suggested that this impaired response contributes to their increased risk of mortality during extreme heat events. Seminal studies have shown that cutaneous vasodilation, the redistribution of blood flow from visceral organs, and the increase in cardiac output are blunted in older adults during passive heating. The blunted rise of cardiac output was initially attributed to an inability to maintain stroke volume, suggesting that cardiac systolic and/or diastolic function does not adequately respond to the constraints of heat stress in older adults. Recent studies evaluated potential mechanisms underlying these seminal findings and their results challenge some of these initial observations. Notably, stroke volume is maintained during heat exposure in older adults and studies have provided evidence for preserved cardiac systolic and diastolic functions in this population. Nonetheless, a blunted increase in cardiac output during heat exposure remains a consistent observation in older adults, although it is now attributed to a blunted increase in heart rate. Recent studies have also evaluated the possibility that the attenuated capacity of aged skin to vasodilate contributes to a blunted increase in cardiac output during heat stress. The objective of this Mini-Review is to highlight these recent advances and challenge the long-standing view that the control of stroke volume during heat exposure is compromised in older adults. By doing so, our intent is to stimulate future studies to evaluate several unanswered questions in this area of research.