https://www.selleckchem.com/products/z-4-hydroxytamoxifen.html It has been proposed that declarative memory evolved from spatial navigation, with episodic memory having its roots in mechanisms of egocentric navigation and semantic memory in those of allocentric navigation; however, whether these brain networks actually overlap is still unclear. Using Activation Likelihood Estimation, we assessed the correspondence between brain correlates of spatial navigation (SN) and autobiographical memory (AM), further testing whether neural substrates of episodic memory (EAM) and egocentric navigation, and those of semantic memory (SAM) and map-like navigation, coincide. SN and AM commonly activated the parahippocampal gyrus and middle hippocampus, posterior cingulate cortex and right angular gyrus, but also involved distinct brain regions. Similarly, EAM and egocentric navigation, besides sharing a network involving the right angular gyrus, bilateral posterior cingulate and parahippocampal gyrus, activated distinct brain regions; no region was commonly activated by SAM and allocentric navigation. We discuss findings in the light of theories on the relation between navigation and memory, and propose a new theoretical perspective, which takes into account the dynamic nature of navigational processes.The circadian rhythm is essential for the interaction of all living organisms with their environments. Several processes, such as thermoregulation, metabolism, cognition and memory, are regulated by the internal clock. Disturbances in the circadian rhythm have been shown to lead to the development of neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD). Interestingly, the mechanism of the circadian rhythms has been conserved in many different species, and misalignment between circadian rhythms and the environment results in evolutionary regression and lifespan reduction. This review summarises the conserved mechanism of the internal clock and its majo