https://www.selleckchem.com/products/Nolvadex.html Septins (Septs) are a widely expressed protein family of 13 mammalian members, recognized as a unique component of the cytoskeleton. In human platelets, we previously described that SEPT4 and SEPT8 are localized surrounding α-granules and move to the platelet surface after activation, indicating a possible role in platelet physiology. In this study, we investigated the impact of Sept8 on platelet function in vitro using Sept8-deficient mouse platelets. Deletion of Sept8 in mouse platelets caused a pronounced defect in activation of the fibrinogen receptor integrin αIIbβ3, α-granule exocytosis, and aggregation, especially in response to the glycoprotein VI agonist convulxin. In contrast, δ-granule and lysosome exocytosis of Sept8-deficient platelets was comparable to wild-type platelets. Sept8-deficient platelet binding to immobilized fibrinogen under static conditions was diminished and spreading delayed. The procoagulant activity of Sept8-deficient platelets was reduced in response to convulxin as determined by lactadherin binding. Also thrombin generation was decreased relative to controls. Thus, Sept8 is required for efficient integrin αIIbβ3 activation, α-granule release, platelet aggregation, and contributes to platelet-dependent thrombin generation. These results revealed Sept8 as a modulator of distinct platelet functions involved in primary and secondary hemostatic processes. Accumulating evidence suggests that circulating amyloidβ 1-40 (Αβ1-40), a proatherogenic aging peptide, may serve as a novel biomarker in cardiovascular disease (CVD). We aimed to explore the role of plasma Αβ1-40 and its patterns of change over time in atherosclerosis progression in postmenopausal women, a population with substantial unrecognized CVD risk beyond traditional risk factors (TRFs). In this prospective study, Αβ1-40 was measured in plasma by enzyme-linked immunosorbent assay and atherosclerosis was assessed using carotid