The life cycle impacts of treatment of typical oil-based drill cuttings (OBDCs) using three low-temperature thermal desorption (LTTD)-based systems, including thermomechanical cuttings cleaner (TCC), screw-type dryer (STD), and rotary drum dryer (RDD), were explored with a case study in British Columbia, Canada. Two energy supply scenarios, including diesel generator-based onsite (scenario i) and hydropower-based offsite (scenario ii) treatments, were considered in the assessment. The results show that RDD generated the lowest life cycle impacts in terms of damages to human health, ecosystems, and resources in scenario i. TCC-scenario ii generated the lowest impacts among all assessed cases, suggesting that using renewable energy can greatly reduce the impacts of LTTD-based OBDCs treatment. Also, net environmental benefits could be achieved considering the reuse of recovered oil, and the highest net environmental benefits were obtained in TCC-scenario ii. The process contribution analysis found that thermal desorption process accounted for 80-95 % of impacts in almost all impact categories. Energy consumption contours and linear regression models were also developed to help drilling waste managers estimate the life cycle impacts of using hydropower-driven TCC to treat OBDCs with different water and oil contents.Pantetheinase, also known as Vanin-1, catalyzes pantetheine to decompose into the precursor of CoA - pantothenic acid and aminothiol cysteamine. Studies have shown that Vanin-1 plays an important role in many important physiological pathologies. In this paper, a new red emission ratio fluorescent probe DCM-PA (I640 nm/I564 nm) has been implemented to detect the activity of Vanin-1 in cells and vivo. DCM-PA has short response time (30 min), high selectivity and low sensitivity (DL =0.69 ng/mL). Also, we have applied DCM-PA for imaging in cells and mice, and the results have indicated that the probe has a non-negligible potential for monitoring the activity of Vanin-1 in situ, benefiting further to study the role of Vanin-1 in physiology and pathology. In addition, the up-regulation of this enzyme by starvation confirmed the inevitable connection between diabetes and abnormal expression of Vanin-1.Magnetic activated carbon and magnetic biochar have been widely used for contaminants removal due to the advantages of sequestration and recovery. However, the remediation function and microbial response of conductive magnetic carbonaceous materials for treating organic contaminated sediment are poorly understood. In this study we applied novel three-dimensional mesh magnetic loofah sponge biochar (MagLsBC), made from natural agricultural product, to remediate polycyclic aromatic hydrocarbons (PAHs)-contaminated sediment. Compared to other carbon-based materials, MagLsBC achieved the high reduction of PAHs content and bioavailability in sediment by respectively 31.9 % and 38.1 % after 350 days. Microbial analysis showed that MagLsBC amended sediment had different community diversity, structure and enriched dominant species associated with the aromatic hydrocarbon metabolism. And MagLsBC amendment significantly increased the aromatic compounds degradation function, which was not observed in other treatments, and methanogenesis function. Further analysis revealed that the enhanced microbial responses in MagLsBC amended sediment were related with the high conductivity of MagLsBC. These results give the new insights into the effect of magnetic carbon materials on microbial community and organic pollutants degradation function during the long period amendment, demonstrating MagLsBC as an effective material with the biostimulation potential for the risk control of PAHs contamination.So far, the phytotoxic hazards of nano-sized mercuric oxide (HgO-NPs) are not investigated. Herein, the phytotoxicity of fully characterized HgO-NPs (100 mg/kg soil), prepared by coprecipitation method, on maize grown under ambient (aCO2, 410 ppm) and elevated CO2 (eCO2, 620 ppm) was investigated. Regardless of CO2 concentration, HgO-NPs treatment increased Hg levels in maize organs. HgO-NPs induced severe oxidative stress in aCO2 grown plants as indicated by reduced growth and photosynthesis and accumulation of reactive oxygen species (ROS), through photorespiration and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activities, and lipid and protein oxidation products. Although HgO-NPs increased molecular (polyphenols, flavonoids, tocopherols) and enzymatic (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione peroxidase) antioxidants in shoots of aCO2 plants, but this failed to fight the eruption of increased ROS. On contrary, eCO2 treatment mitigated the HgO-NPs impact by promoting photosynthesis and reducing the Hg-induced ROS production. Moreover, eCO2 promoted ROS detoxification via molecular antioxidants overproduction, enhanced superoxide dismutase, catalase and peroxidases activities, and modulation of reduced ascorbate/oxidized ascorbate and reduced glutathione/oxidized glutathione homeostasis. https://www.selleckchem.com/products/mk-4827.html The combined HgO-NPs + eCO2 treatment also enhanced the glutathione-S-transferase activity. This study suggests that HgO-NPs cause severe phytotoxic hazards and this effect will be less detrimental under future CO2 climate.In this work, three-dimensional numerical simulations with a simplified reaction mechanism are conducted to investigate the effect of implementing a perforated plate in an ammonia-fueled micro-power systems on the NOx emission behavior. Detailed analyses on 1) the perforated plate hole dimensionless width w, dimensionless location l as well as the material property are performed. Results show that with an optimized perforated plate implemented, the NO emission is reduced by up to 73.3 % compared to those in the absence of perforated plates. The decrease is mainly due to the formation of a recirculation zone with a low flame temperature. Increasing w is shown to play a positive role in minimizing the NO generation, while l leads to a reverse trend resulting from the size variation of the recirculation zone. In contrast, the plate material has a negligible effect on NOx emissions. It is also shown that the pressure loss Ploss is varied non-monotonically with l, but monotonically with w and the NH3 volumetric flow rate.