Finally, cellular thermal shift assay showed that Pue has the ability to stabilize CHAF1B stabilization. The knock-down of CHAF1B reduced the protective effect of Pue on cardiomyocytes. In conclusion, Pue protects cardiomyocytes from apoptosis through binding with CHAF1B.Different portions (stem GIS and leaf GIL) of Garcinia linii were extracted by ethanol/water and crude extracts were employed to investigate the contents of total phenol and flavonoids, antioxidation activities, and inhibitory activities of α-amylase and α-glucosidase via enzymatic assay and OGTT and OSTT for lowering glucose levels. The data revealed that GlS and GlL contained different levels of flavonoids and total phenol. Furthermore, the results showed the extracts exhibited remarkable antioxidation activities and inhibitory activities of α-amylase and α-glucosidase. In silico docking studies were done using Gold software and the probable molecules retrieved from PubChem were docked with several anti-diabetic relate targets, the results showed several components of G. linii could potentially inhibit diabetic molecules when compared with clinic drugs. The cell glucose uptake data also confirmed that GlL and GlS could retain the active component in the regulation of insulin, AMPK, PPARγ, and DPP4. In vivo, the evidence showed G. linii extracts including syringaldehyde suppressed effect of hyperglycemia on OSTT and OGTT assays. These results suggest that G. linii extract has a potential therapeutic value for the treatment of diabetes in humans.Osteosarcoma (OS) is the most common type of bone malignant tumors. Clinical commonly used therapeutic drugs of OS treatment are prone to toxic and side effects, so it is very urgent to develop new drugs with low toxicity and low side effects. As a Chinese herbal medicine, Cardamonin (CAR) (C16H14O4) has inhibitory effects in various tumors. In the present study, we investigated the effects of CAR on OS cells in vitro and in vivo. We found that CAR inhibited cell proliferation, reduced migration, decreased invasion, and induced G2 / M arrest of OS cells. Notably, we demonstrated that CAR had no obvious effect on proliferation and apoptosis of normal cells. Besides, CAR repressed tumor growth of OS cells in xenograft mouse model. Mechanically, we found that CAR increased the phosphorylation level of P38 and JNK. In summary, our research validates that CAR may inhibit the proliferation, migration, and invasion of OS and promote apoptosis possibly by activating P38 and JNK Mitogen-activated protein kinase (MAPK) signaling pathway.The purpose of this study is to use Dicliptera chinensis (L.) Juss (Acanthaceae) polysaccharide (DCP) to act on the NF-κB inflammatory pathway and Fas/FasL ligand system, in order to find a new method to improve immune liver injury. Lipopolysaccharide (LPS) was used to establish an injury model in vivo (Kunming mice) and in vitro (LO2 cells). In this experiment, hematoxylin-eosin (H&E) staining and related biochemical indicators were used to observe the pathological changes of liver tissues, oxidative stress and inflammatory reactions. Immunohistochemistry, ELISA, RT-PCR and Western blot were used to detect protein or mRNA expressions associated with inflammation response and apoptosis. The experimental results show that the model group has obvious liver cell damage and inflammatory infiltration. After DCP intervention, it could significantly reduce the levels of ALT, AST, ALP, TBIL and MDA in serum, and increase the content of SOD and GSH-Px. In addition, DCP can reduce the expression level of NF-κB in the liver and reduce the release of downstream inflammatory factors TNF-α, IL-6 and IL-1β, thereby reducing the inflammation. At the same time, DCP can significantly inhibit the expression of Fas/FasL ligand system and apoptosis related-proteins and mRNA, which in turn can reduce cell apoptosis. In conclusion, DCP can alleviate liver injury by inhibiting liver inflammation and apoptosis, which provides a new strategy for clinical treatment of immune liver injury. To study the expression of FAM46A in glioblastoma (GBM) and analyze its significance in predicting the prognosis of patients. mRNA expression and clinical data of patients with GBM were retrieved from ONCOMINE databases and The Cancer Genome Atlas (TCGA) database. Immunohistochemistry was performed in a tissue microarray including 110 GBM cases and 12 normal controls to determine the expression of FAM46A protein. Then, Kaplan-Meier curve and Cox regression model were used to investigate the relationship between FAM46A expression and clinical outcome. Coexpressed genes of FAM46A were analyzed by Linked Omics, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Upregulated expression of FAM46A was found in both TCGA and our cohort. High FAM46A expression was associated with the poor prognosis of patients with GBM and could be identified as an independent risk factor for overall survival (HR = 1.652, p = 0.022). Further bioinformatics analysis revealed that FAM46A might be involved in cell motility and endoplasmic reticulum proteostasis and stress to promote GBM progression. Our findings suggest that increased expression of FAM46A in GBM is a novel biomarker for predicting poor outcome of patients and that targeting FAM46A may serve as a potential therapy for this disease. Our findings suggest that increased expression of FAM46A in GBM is a novel biomarker for predicting poor outcome of patients and that targeting FAM46A may serve as a potential therapy for this disease. When vertebroplasty is used to treat Kummell disease with bone deficiency at the vertebral anterior border, bone cement displacement often occurs intraoperatively or postoperatively. We designed and used a new bone cement screw system to avoid this serious complication. The purpose of this study was to evaluate the safety and effectiveness of this novel operation method through more than 3 years of follow-up. From January 2014 to August 2016, 27 patients suffering from single-segment Kummell disease with bone deficiency at the vertebral anterior border were treated by vertebroplasty combined with a novel bone cement screw. Bone cement was released into the diseased vertebrae through the screw to fully fill the intravertebral vacuum cleft. Screw fixation of bone cement can avoid intraoperatively or postoperatively displacement. All patients received surgery involving a unilateral technique, and only one screw was implanted in each patient. https://www.selleckchem.com/products/indisulam.html The clinical efficacy was evaluated using Odom's criteria and statistical analysis of the vertebral body index (VBI), vertebral body angle (VBA), bisegmental Cobb angle (BCA), visual analogue scale (VAS), Oswestry disability index (ODI), and the results of the MOS 36-item short form health survey (SF-36).